
Integrated Systems: J2EE for EAI M. Juric & I. Rozman
Transactions, security, naming, performance, and Web services 8

Feature: Avoiding Pitfalls in Larry McCay
Declarative Security A roadmap to a portable access policy 20

Obfuscation: Protecting Commercial Micah Silverman
JSP Applications Take advantage of the benefits of JSP 28

JDiff Report: JDiff – What Really Changed? Matthew B. Doar
Comparing Java APIs and documenting changes 38

Q&A: Prescriptions for Your Java Ailments James McGovern
The answers to all your Java-related questions 58

Distributed Apps: The Next Generation of Dan Pilone
Consumer Applications Leverage the new capabilities 64

Feature: Architecting Mobile/Wireless James White
First, be sure you understand the issues 74

JDK 1.4: An Interview with Sherman Dickman A.Williamson
JDJ readers question Sun regarding the latest JDK 100

Java COM

SYS-CON
MEDIA

RETAILERS PLEASE DISPLAY
UNTIL JUNE 30, 2002

April 2002 Volume:7 Issue:4

The World’s Leading Java Resource

TM

Rational® XDE™

be liberated

Order a Solutions CD
www.rational.com/offer/xdecd

Try Rational® XDE™Order a Solutions CD
www.rational.com/offer/xdecd

Full Conference Program
INSIDE pg. 107

Java COM

2 APRIL 2002

Sonic Software
www.sonicsoftware.com

3APRIL 2002

Java COM

Zero G
www.zerog.com

Java COM

4 APRIL 2002

BEA
www.bea.com/download

AUTHOR BIO
Alan Williamson is editor-in-chief of Java Developer’s Journal. During the day he holds the post of chief technical officer at n-ary
(consulting) Ltd, one of the first companies in the UK to specialize in Java at the server side.
Rumor has it he welcomes all suggestions and comments.

R O M T H E E D I T O RI

There May Be Trouble Ahead…

alan@sys-con.com

ALAN WILLIAMSON EDITOR-IN-CHIEF

As Nat King Cole famously sang, we
have to “face the music and
dance…” This month’s editorial is

coming to you with a reader beware warning!
I’ve been engaged in some great debates

over the last month on a variety of topics, but
the one that has caught my interest is the old
chestnut regarding the longevity of Java. Is it
here to stay? If not, how long do we have?
Quite rightly, it’s being talked about and I’ve
had the good fortune to brush shoulders
with a number of big names in our industry
who have given me their perspectives on the
whole debate. I have my own feelings about
where Java is headed and I do believe that if,
as a community, we don’t get our act togeth-
er, we may have only five years left at the
most. After talking to my counterparts, it
would appear I’m being overly generous
with five years.

What’s happening? Well, it’s our old
friend C# and its relentless march toward the
development community. Setting aside the
old argument that due to Microsoft’s domi-
nance it may well win the day, it’s interesting
to look at other reasons why C# may win the
battle. Let’s blow away some misconceptions
that you may or may not be aware of regard-
ing this new kid.

Myth #1: C# is a Windows-only technology.
You could be excused for believing that,

but did you know there’s a major movement
in the open source world to port the CLR
(Common Language Runtime, i.e., their JVM!)
to operating systems other than MS
Windows? Linux, to name one. Imagine for a
moment being able to run your .NET services
alongside Apache on a Redhat box, seamless-
ly integrating into the rest of the network. This
alone would be a major blow to server-side
Java. It’s also a subtle way for Microsoft to
unofficially support the growing number of
Linux seats without losing face (read
www.halcyonsoft.com/news/iNET_PR.asp).

Myth #2: C# is an inferior Java clone.
This is the most dangerous one and the

one you probably tell yourself in order to
keep the scales tipped in Java’s favor. The
truth is, it’s not an inferior clone; it’s a differ-
ent clone, with many arguing that the differ-
ences are minute to the majority of the
developer community. It will be frightening-
ly easy for Java developers to move over to C#
with no real headaches to contend with. I
suspect this was always on Microsoft’s mind
when developing the language (read
www.prism.gatech.edu/~gte855q/CsharpVs
Java.html).

Myth #3: C# is for developing Web services only.
Most definitely not, and I have heard this

one retorted back to me on a number of
occasions. Ironically, this is the one area that
could really hurt Java – on the client. As you
know, Java has not made any significant
headway in this space due mainly to its
awfully slow Swing implementation. While
the recent release of JDK1.4 has brought sig-
nificant performance gains, it’s still nowhere
near the speed of its native Windows appli-
cations with respect to fast, snappy respons-
es (although it must be said, the speed of a
Swing application on a Mac OS-X does show
what could be achieved). C# is the new
building block for Windows applications, the
next VB! And we know how many applica-
tions popped up when VB hit the market
(read www.c-sharpcorner.com/WinForms.
asp).

Okay, how many of you think I’ve aban-
doned all hope for Java and have gone to the
dark side? I suspect some of you are ques-
tioning my loyalties at this precise moment,
wondering if I’m fit to occupy my role as EIC.
Well, don’t panic, I’m merely being a realist
and looking at it from all angles. You’d be the

–continued on page 98

I N T E R N A T I O N A L A D V I S O R Y B O A R D
• CALVIN AUSTIN (Lead Software Engineer, J2SE Linux Project, Sun Microsystems),

• JAMES DUNCAN DAVIDSON (JavaServlet API/XMP API, Sun Microsystems),
• JASON HUNTER (Senior Technologist, CollabNet), • JON S. STEVENS (Apache Software

Foundation), • RICK ROSS (President, JavaLobby), • BILLROTH (Group Product
Manager, Sun Microsystems), • BILL WILLETT (CEO, Programmer’s Paradise)

• BLAIR WYMAN (Chief Software Architect IBM Rochester)

E D I T O R I A L
EDITOR-IN-CHIEF: ALAN WILLIAMSON

EDITORIAL DIRECTOR: JEREMY GEELAN
J2EE EDITOR: AJIT SAGAR

J2ME EDITOR: JASON R. BRIGGS
J2SE EDITOR: KEITH BROWN

PRODUCT REVIEW EDITOR: JIM MILBERY
FOUNDING EDITOR: SEAN RHODY

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN: JIM MORGAN

ASSOCIATE ART DIRECTOR: LOUIS F. CUFFARI
EXECUTIVE EDITOR: M’LOU PINKHAM

MANAGING EDITOR: CHERYL VAN SISE
EDITOR: NANCY VALENTINE

ASSOCIATE EDITORS: JAMIE MATUSOW
GAIL SCHULTZ
JEAN CASSIDY

ONLINE EDITOR: LIN GOETZ
TECHNICAL EDITOR: BAHADIR KARUV, PH.D.

W R I T E R S I N T H I S I S S U E
BILL BALOGLU, JASON R. BRIGGS, KEITH BROWN,
JURIC B. MATJAZ, LARRY MCCAY, JAMES MCGOVERN,

BILLY PALMIERI, KIRK PEPPERDINE, DAN PILONE, IVAN ROZMAN,
AJIT SAGAR, MICAH SILVERMAN, SCOTT SILVERMAN, JOHN WALKER,

JAMES WHITE, ALAN WILLIAMSON, BLAIR WYMAN

S U B S C R I P T I O N S :
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: SUBSCRIBE@SYS-CON.COM
COVER PRICE: $5.99/ISSUE

DOMESTIC: $49.99/YR. (12 ISSUES)
CANADA/MEXICO: $79.99/YR. OVERSEAS: $99.99/YR.

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $10/EA., INTERNATIONAL $15/EA.

E D I T O R I A L O F F I C E S :

SYS-CON MEDIA 135 CHESTNUT RIDGE RD., MONTVALE, NJ 07645
TELEPHONE: 201 802-3000 FAX: 201 782-9600

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is published monthly
(12 times a year) for $49.99 by SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645. Periodicals postage rates are paid at

Montvale, NJ 07645 and additional mailing offices. POSTMASTER: Send address
changes to: JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

135 Chestnut Ridge Road, Montvale, NJ 07645.

© C O P Y R I G H T :
Copyright © 2002 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and

retrieval system, without written permission. For promotional reprints, contact reprint coor-
dinator Carrie Gebert, carrieg@sys-con.com. SYS-CON Publications, Inc., reserves the right
to revise, republish and authorize its readers to use the articles submitted for publication.

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

5APRIL 2002

J2SE
H

om
e

J2E
E

J2M
E

Java COM

6 APRIL 2002

Java COM

TogetherSoft
Corporation
www.togethersoft.com/1/jd.jsp

AUTHOR BIO
Ajit Sagar is the J2EE editor of JDJ and the founding editor and editor-in-chief of XML-Journal. A lead architect with Metavonni, LC,

based in Dallas, he’s well versed in Java,Web, and XML technologies.

ajit@sys-con.com

Designing for the n th Tier
You want to develop a new business

application based on your particu-
lar business problem. You get a

software team to pull together the right
mix of technologies to build the required
software components. You choose an
architect to capture your business require-
ments and to define the right mix of soft-
ware and hardware to deploy the appro-
priate solution. You put together a devel-
opment team to implement the business
processes of your application in the form
of software components that magically do
everything. Now all you have to do is sell
the solution. Right?

Wrong. Nothing is ever that easy, espe-
cially in software development. One of the
toughest challenges when designing a
software application is to define the
deployment architecture that ultimately
hosts the application’s components.
Unfortunately, in an application develop-
ment cycle it’s typical to postpone this
until the software components are near
completion. For successful businesses, it’s
imperative that the software architecture
be well defined ahead of time. Otherwise,
changing the developed components to
adapt to the runtime architecture is a very
costly proposition in both time and
money.

The Java platform was designed to sup-
port distributed applications from the get-
go, although the pieces to effectively do so
came later. When Sun divided Java into
three editions, it was clear that the plat-
form had come full circle, with J2EE as the
architecture for developing business
applications across the different tiers.
During the past two years, the vendors
have solidified their offerings for building
applications based on Java’s distributed
technologies and encompassed by J2EE.
However, your software architect has a
plethora of choices for developing the end
application. How well your architect
accomplishes this is based on his or her

experience in identifying the appropriate
technologies from the wide gamut offered
by J2EE. This, in turn, is based on the abil-
ity of your software architect to identify
the deployment architecture needed to
finally host the application.

The current release of the platform
offers several options on how to structure
the tiers of your application. Specifically,
the maturation of the EJB component
model, the support around XML and mes-
saging, the introduction of the JCA archi-
tecture, and the value-added support
offered by the leading application server
vendors provide a very stable environment
for defining the deployment architecture
at an early stage. In addition, the mis-
match between the requirements defini-
tion and analysis tools such as UML and
software design environments has
decreased tremendously. Most of the lead-
ing application servers and IDE environ-
ments are moving toward offering consol-
idated environments that allow require-
ments capture and analysis and software
development using the same suite of tools.
One of the technologies that makes this
possible is XML, since it provides a uni-
form mechanism for exchanging data
between environments.

However, getting the right set of tools
doesn’t complete the job; they have to be
applied properly. Good architectural
design for an n-tier application requires
the ability to select and eliminate the fea-
tures offered by the platform and support-
ing environments to maintain the needs of
a specific application. Several application
development efforts are based on the
examples that are bundled with develop-
ment tools or offered by the platform.

A case in point in the J2EE world is
Sun’s Pet Store example. While this is sup-
ported by most of the leading vendors, it’s
too trivial for designing a real-world appli-
cation. Ultimately, you’ll have to tailor the
technologies to your specific business

J 2 E E E D I T O R I A LR J 2 E E I N D E XX

AJIT SAGAR J2EE EDITOR

Designing for the nth Tier
You want to develop a new busi-

ness application based on your
particular business problem.

by Ajit Sagar

J2EE for EAI
A discussion of advanced

integration topics, particular-
ly transaction and security,

support for Web services,
and an overview of J2EE

application servers.
by Matjaz B. Juric & Ivan Rozman

Avoiding Pitfalls in J2EE
Declarative Security

Applications need to pre-
vent improper access to data
and ensure that data integrity
can be maintained. To guard
against such compromises,

developers must first be
aware of resource sensitivity.

by Larry McCay

Protecting Commercial
JSP Applications

Protect JSP-based appli-
cations in such a way that

they can be deployed to cus-
tomers without giving away

source code or class files
that are easy to decompile.

by Micah Silverman

7

8

20

28

7APRIL 2002

Java COM

J2SE
H

om
e

J2E
E

J2M
E

requirements. This involves answering
hard questions like: Should you develop
your application on a three-tier architec-
ture using only the Web component layer
as opposed to the EJB layer provided by
J2EE? When should you use direct JDBC
instead of container-managed database
access? Are there cases that warrant the
use of a two-tier model? Can you base
your application on a pure asynchronous
messaging layer instead of an EJB-based
middle-tier?

The answer to all these questions is:
yes, but not always. Fortunately, several
J2EE design patterns that embody the
experience of millions of J2EE developers
are available for making the correct
design choices.

Java COM

8 APRIL 2002

J2
SE

H
om

e
J2

E
E

J2
M

E J2EE for EAI

I N T E G R A T E D S Y S T E M S

EAI enables concurrent access to
data and functionality shared between
disparate existing applications while
maintaining integrity, consistency, per-
formance, and recoverability. Trans-
actions play an important role in ensur-
ing integrity, consistency, and recover-
ability.

Support for Transactions
When talking about integration we

have to support transactions that span
existing applications, databases, and
newly developed application compo-
nents. In general, the following are the
most frequently seen scenarios:
• A virtual component or a wrapper in

the business component tier accesses
several different databases (in the EIS
tier) within a single transaction.

• Several virtual components are
included within a transaction and
access several different databases
within a single transaction (see Figure
1).

• A virtual component calls different
EIS systems within a transaction.

• Several virtual components deployed
in different containers call different
EIS systems within a transaction (see
Figure 2).

• A combination of the above – several
virtual components may call a combi-
nation of EIS systems and access sev-
eral different databases within a sin-
gle transaction.

For each scenario it’s necessary to
figure out how transactions can be prop-

agated from the J2EE to the existing sys-
tems and back. Things get more compli-
cated because some of the existing data-
bases and applications may already pro-
vide transactional support.

Local and Distributed Transactions
In general, a transaction includes

several resources (such as components,
databases, and existing systems). Each
resource taking part in a transaction
needs a resource manager, which man-
ages access to one or more resources.
The whole transaction, however, is man-
aged by the transaction manager. Figure
3 illustrates these relationships.

The transaction manager coordi-
nates different resource managers.
Therefore, it has to establish and main-
tain the state of the transaction. This
state is managed by the transactional
context, which associates the transac-
tional operations on the resources. All
resources that participate in a transac-
tion share the same transactional con-
text. Usually the transaction manager
also takes care of propagating the trans-
actional context between the resource
managers. Resource managers, however,
have to notify the transaction manager
about their participation and the current
state of the transaction. Based on this
information, the transaction manager
decides whether to commit or roll back
the transaction. In a commit or rollback,
all resource managers take part.

In simple applications that span only
a single resource (a database, for exam-
ple) we need only one resource manag-

er. We call such relatively simple trans-
actions local transactions. Unfortunate-
ly, in complex integration scenarios we
usually aren’t that lucky.

We have to use transactions that
span different systems, as shown in
Figure 3. These are called distributed
transactions. Such transactions are
more complex than local ones and
require a special algorithm, the two-
phase commit, to commit them. It per-
forms the voting phase and the commit
phase in a complicated sequence of
interactions between the transaction
manager and resource managers.
Fortunately, there are two standards for
distributed transactions that enable
transactional interoperability between
different products:
• ISO TP model
• X/Open DTP (Distributed Transaction

Processing) model

The ISO TP model doesn’t have many
supporters and therefore doesn’t play an
important role in distributed transac-
tion processing. Far more important is
the X/Open DTP Model, which has
established itself as a standard among
vendors providing transactional sys-
tems. X/Open DTP specifies two inter-
faces between the major elements of a
transactional system:
• TX interface: The interface between

application components and the
transaction manager, it enables an
application component to join a
transaction.

• XA interface: This defines the interac-

WRITTEN BY
MATJAZ B. JURIC
& IVAN ROZMAN

Last month’s article “J2EE As the Platform for EAI” (JDJ,Vol. 7 issue 3) discussed the
suitability of the J2EE platform for EAI (Enterprise Application Integration). This article
addresses more advanced integration topics, particularly transaction and security, support
for Web services, and an overview of J2EE application servers.

Transactions, security, naming, performance, and Web services

9APRIL 2002

Java COM

Metrowerks
Corp.

www.wireless-studio.com

Java COM

10 APRIL 2002

I N T E G R A T E D S Y S T E M S

tion between the resource managers
and the transaction managers. This
interface enables the cooperation of
different resource managers, imple-
mented by different resources, to take
part in a single distributed transac-
tion

Most widely implemented commer-
cial products support the X/Open DTP
standard, including:
• DBMSs such as Oracle, Informix,

Sybase, and MS SQL Server
• TP monitors such as Encina, Tuxedo,

and TopEnd
• MOMs such as IBM MQSeries and MS

MQ
• Distributed-component models such

as CORBA (through CORBA Object
Transaction Service)

How J2EE Supports Transactions
You probably know that J2EE sup-

ports transactions in the Web compo-
nent tier, the business logic tier, and the
EIS tier. The J2EE specification doesn’t
require support for transactions on the
client tier. Although J2EE supports trans-
actions in the Web component tier, it’s a
much better idea to delegate the transac-
tional work to the business logic tier.

J2EE also provides two ways to spec-
ify transactions. It supports program-
matic and declarative transactions. With
declarative transaction demarcation,
the J2EE components are marked as
transactional at deployment. The con-
tainer (the EJB container, for example) is
responsible for determining transaction
boundaries.

With programmatic transaction
demarcation, the transaction clients
demarcate transaction boundaries
themselves. In most cases, the transac-
tion clients associate the transactional
context with the thread, which executes
the transactional operations.

To access the transaction service func-
tionality, J2EE has the JTA (Java
Transaction API), which provides an
abstraction layer on top of the JTS (Java
Transaction Service). JTA specifies stan-
dard interfaces through which different
resources participating in a transaction
can communicate. The abstraction layer
provided by the JTA enables the platform
to choose which JTS implementation it
will use. The implementation, which is
typically provided by the application serv-
er, is transparent to the application com-
ponents because the application compo-
nents don’t interact with the JTS directly.

The really important fact for integra-
tion is that the JTS is compliant with the
CORBA Object Transaction Service
(OTS) 1.1. More precisely, it’s the map-
ping of the CORBA OTS to Java. It prop-
agates transactions using the IIOP pro-
tocol. As I’ve already mentioned, CORBA
OTS provides support for distributed
transactions, so we can infer that the JTS
also supports them.

However, the J2EE specification 1.3
doesn’t require a J2EE implementation
to support distributed transactions.
Fortunately, most widely implemented
J2EE application servers, such as BEA
WebLogic, IBM WebSphere, and Oracle
9iAS, already provide support for these
transactions.

Existing Systems and Transactions
Support for distributed transac-

tions is thus required for serious inte-

gration of transactional behavior
between the J2EE and existing transac-
tional EIS systems that are X/Open
DTP compliant; fortunately, most EIS
systems are compliant. When we
access such systems within transac-
tions, they behave in accordance with
other resources included in the trans-
action. They commit changes only if
the whole transaction is committed;
otherwise they roll back the results.
Within such a transaction we can inter-
operate interactions with several EIS
systems. The coordination and the
propagation of transactional context is
handled automatically.

EIS systems that implement local
transactions that aren’t X/Open DTP
compliant require more manual work to
achieve transaction integration. Such
transactions are managed by the
resource manager of the underlying EIS;
therefore the J2EE application server
won’t be aware of them and won’t be
able to control or influence them. With
local transactions we have to commit or
roll back each system explicitly and
manually.

A technique to manage this scenario
is to use compensating transactions. For
every system in which we use a local
transaction, we have to define a com-
pensating transaction with which we
can undo the effects of a previously
committed local transaction. Com-
pensating transactions have to be
implemented programmatically and
they introduce a few problems:
• They don’t provide high enough isola-

tion for clients accessing the EIS sys-
tem. The transaction is committed
and then reversed after some time. In
the meantime, other clients can see
the inconsistent state. Compensation
transactions implement only the read
uncommitted isolation level.

• If the compensating transaction isn’t
successful, the state of the EIS system
can become inconsistent.

We have to be aware of these prob-
lems and provide application logic that
will resolve these situations if they arise.

Support for Security
Security is another important topic

for EAI. When defining the integration
architecture, we have to ensure that
existing applications remain secure and
that we don’t re-create functionality that
already exists. However, we also have to
ensure the integration of security mech-
anisms. Imagine an integrated informa-
tion system in which each user has to
use an application-specific way to
authenticate and authorize. Using such

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 3 Transaction relationships

FIGURE 1 Virtual components access databases

FIGURE 2 Virtual components call EIS systems

11APRIL 2002

Java COM

DataDirect
Technologies
www.datadirect-technologies.com

Java COM

12 APRIL 2002

I N T E G R A T E D S Y S T E M S

a system would be pretty tedious,
requiring users to log on several times
using different username and password
combinations.

What we need is a way to propagate
security contexts through integrated
applications. In other words, we need a
standardized security model that can
handle a wide range of applications,
establish an end-to-end security
through the tiers, and provide a single
authentication point for the user.

As we know, Java has a policy-driven,
domain-based security model. Java pro-
vides extension packages that were ini-
tially introduced as optional but have
been integrated into J2SE 1.4, including:
• Java Authentication and Author-

ization Service (JAAS): Provides a
framework for authentication and
authorization. J2EE 1.3 requires that
J2EE application servers use JAAS in
Web component and EJB containers,
particularly to support J2EE connec-
tor architecture.

• Java Secure Socket Extension (JSSE):
Provides packages for enabling secure
communications using SSL and TLS
protocols and includes functionality
for encryption, authentication, and
message integrity.

• Java Cryptography Extension (JCE):
Provides a framework and implemen-

tation for encryption,
key generation, key
agreement, and MAC
(Message Authentication
Code) algorithms.

Authentication is
often performed in two
steps. First, based on a
password or some other
secret information, an
authentication context is
created. This context
stores the identity and
can create proofs of
identity. Second, the
authentication context is
used to do authentica-

tion with all involved entities. The
important questions now become how
we can control access to the authentica-
tion context, and how do we propagate
it. Possibilities include the following
variations:
• Access to the authentication context

is made available to all trusted com-
ponents.

• The caller can delegate the authenti-
cation context to the called compo-
nent.

• All processes started by the user that
performed the authentication inherit
access to the authentication context.

The propagation of authentication
context introduces a certain overhead.
Therefore, we can set up so-called trust-
ed environments in which the compo-
nents can communicate without
authentication. Such environments are
called protection domains.

In J2EE, the container provides the
boundary on which the authentication
is performed when outside callers try to
access the components inside the con-
tainer. However, the container bound-
aries aren’t always the same as the pro-
tection domain boundaries. Often the
Web component container and the EJB
container form a protection domain in
which the EJB container can trust the
Web component container (see Figure
4).

The authentication in J2EE is based
on users, realms, and groups. Users rep-
resent people who use the information
system. A realm is a collection of users
who are authenticated in the same way.
J2EE supports two realm types: default
and certificate. Default realms are used
to authenticate all clients except Web
clients. Web clients have to use the cer-
tificate realm. Users of the default realm
can belong to a group. A group is a cate-
gory of users who share a certain role –
customers or employees, for example.

For authentication JAAS supports
different models to be plugged in at run-
time. This enables us to use an industry-
standard authentication technology
through all the integrated applications.
Kerberos, the most commonly used
authentication technology, enables sin-
gle sign-on support for multiple appli-
cations. Kerberos is a network authenti-
cation service created by MIT. (For more
information on Kerberos please see
http://web.mit.edu/kerberos/www/.)

JAAS, together with JSSE and JCE,
enables us to build our own EAI security
infrastructure. It allows us to wrap the
existing applications in the same securi-
ty process, using industry standards
such as Kerberos for authentication, SSL
and TLS for communication channel
protection, and application-independ-
ent encryption engines.

In EAI projects that involve integra-
tion of non-Java applications and
resources, J2EE-based security may not
always be sufficient to achieve end-to-
end security. A solution is to use the
CORBA security model, which can be
used from Java as well as from applica-
tions written in other programming lan-
guages. It’s beyond the scope of this arti-
cle to go into the details of CORBA secu-
rity, but more information can be found
at www.omg.org.

Another possibility is to use the
Generic Security Services (GSS) API,
developed by the Internet Engineering
Task Force. GSS provides generic
authentication and a secure messaging
interface that supports pluggable secu-
rity mechanisms. GSS version 2 is
defined in a language-independent for-
mat. GSS applications can use different
security mechanisms without having to
make changes to the application itself.

Java bindings for GSS are referred to
as JGSS. The JGSS API is part of J2SE 1.4.
JGSS allows Java developers to create uni-
form access to security services over dif-
ferent mechanisms, including Kerberos.

You may wonder why we need the
JGSS API. While it shares many features
with JAAS and JSSE, JGSS has some fea-
tures not present in the Java security
model:
• The JGSS API contains support for

Kerberos as the key authentication
mechanism, which allows single sign-
on support. The JSSE API doesn’t sup-
port a Kerberos-based cipher suite – it
supports SSL/TLS only.

• JGSS is a token-based API that relies
on the application to handle commu-
nication. This allows an application to
use the transport protocol of its choice
to transport the tokens. JSSE allows
only applications to use sockets.

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 4 Protection domain in J2EE

FIGURE 5 JNDI architecture

13APRIL 2002

Java COM

Oracle
Corporation

oracle.com/javacode

Java COM

14 APRIL 2002

Infragistics, Inc.
www.infragistics.com

15APRIL 2002

Java COM

Infragistics, Inc.
www.infragistics.com

Java COM

16 APRIL 2002

I N T E G R A T E D S Y S T E M S

• JGSS allows the selection of encryp-
tion type, which allows applications
to intersperse plaintext and cipher-
text messages. JSSE and JAAS don’t
support this.

I expect that JGSS will emerge as the
standard API to use for security integra-
tion in EAI.

Naming and Directory Services
With an integrated information sys-

tem, it becomes important to have a
place to store environment-specific
information in an application-inde-
pendent way. Naming and directory
services are widely used by many com-
panies for storing information on any
directory object in a computing envi-
ronment, including components, com-

puters, printers, persons, and networks.
These services provide operations for
creating, adding, removing, searching,
and modifying these directory objects.
The ubiquity of naming and directory
services makes the selection of these
services for integration a difficult task.
Examples of naming and directory ser-
vices and protocols include LDAP, NIS,
NDS, DNS, SLP, and CORBA Naming.

J2EE doesn’t introduce a proprietary
naming and directory service. Rather, it
provides an abstraction interface, the
Java Naming and Directory Interface
(JNDI) API, that can be used to access
practically any naming or directory
service in use.

To provide support for pluggable
implementation, JNDI also specifies, in
addition to the API, the service provider

interface (SPI). This interface
specifies the interfaces the
provider of a naming and
directory product has to
implement in order to be used
via JNDI (see Figure 5).

More important, by using
JNDI we can access and inte-
grate naming and directory
services that already exist in
our information system. The
prerequisite, however, is that
they provide support for JNDI
– which most products do.

Web Services
EAI is crucial for providing

online, low-latency e-com-
merce solutions – sometimes
e-commerce is the major rea-
son for EAI. EAI architecture,
as proposed, is already suit-
able for extension into the e-
commerce field using Web
services, which build on top of
the J2EE integration architec-
ture. To achieve sound archi-
tecture, we have to be aware
that Web services differ con-
ceptually and technologically
from business logic compo-
nents (such as EJBs, CORBA,
and RMI). Web services focus

more on the exchange of documents,
while business logic components focus
on operations. Document-based sys-
tems provide looser coupling and more
asynchronous communication. This
corresponds with technological differ-
ences. As we know, Web services are
based on XML and use XML-based pro-
tocols and technologies such as SOAP,
WSDL, and UDDI.

Robust Web services can be built on
top of the business logic components
and should be considered highly inter-
operable entry points. One approach is
to map the component interface to the
Web service directly, which usually
requires developing a dedicated compo-
nent (usually an EJB component) to pro-
vide a suitable document-oriented
interface. This approach is supported by
the leading J2EE application servers,
which provide tools to convert EJBs to
Web services.

The other approach is to build Web
services on workflow-based models,
where each Web service calls several
business components and other
resources to fulfill the request. This
approach requires more development
work and some knowledge of the corre-
sponding APIs. As mentioned in my pre-
vious article, the corresponding Java
APIs include JAXM, JAX/RPC, JAXR, and
JWSDL. These APIs are still under devel-
opment and aren’t a standard part of
J2EE 1.3. In the meantime, we have to
use custom APIs provided by applica-
tion server vendors.

Web services are a promising tech-
nology and you may wonder why we
don’t use them for the whole EAI. The
fact is that Web services as they now
exist have some shortcomings: currently
there is no support for transactions; the
security is based on SSL/TLS only; and
because Web services are an XML-based
technology, they require more overhead
for processing.

Performance and Scalability
Also an important EAI topic is the

performance and scalability of the inte-
grated information system. With EAI we
place existing systems in a different
environment and use them in ways they
weren’t designed for. Accordingly, it’s
important to test existing systems for
performance and scalability before we
decide how to reuse them in the inte-
gration architecture. If existing applica-
tions don’t provide acceptable perform-
ance initially, we can’t expect that the
performance of the integrated system
will be acceptable. Thus, we have to
choose at the outset which existing
applications meet our criteria and

J2
SE

H
om

e
J2

E
E

J2
M

E

EAI is crucial for providing online,
low-latency e-commerce solutions.
Therefore, sometimes e-commerce

is the major reason for EAI

“
”

SOLUTIONSsite
www.solutionssite.com

17APRIL 2002

Java COM

Sitraka
www.sitraka.com/jprobe/jdj

Java COM

18 APRIL 2002

I N T E G R A T E D S Y S T E M S

which don’t. For those that don’t, we
have to find ways to improve their per-
formance – for example, through hard-
ware upgrades, software upgrades, tun-
ing, or clustering.

When integrated, existing systems
will also be accessed remotely. In this
sense we want to minimize the number
of remote invocations and the number
of layers through which calls are passed.
Although I’ve recommended building
the integration architecture in tiers, it’s
important to select implementation
techniques carefully to minimize the
communications overhead.

To achieve good performance using
the J2EE integration architecture, you
should focus on many different ele-
ments:
• Define the performance objectives.
• Assess the performance of existing

applications.
• Design a sound integration architec-

ture.
• Start assessing the performance in the

design phase.
• Implement the integration architec-

ture using performance optimal tech-
niques.

• Tune the integration infrastructure
for performance.

• Provide an adequate hardware plat-
form.

J2EE Application Servers for EAI
Finally, we have to mention the

selection of the J2EE application
servers. We have to be aware that differ-
ent servers comply with different ver-
sions of the J2EE platform specification
and that some servers support value-
added features. Some value-added fea-
tures require the use of specialist APIs.
Examples include support for Web
services. Most application servers that
support these features don’t use JAX*
interfaces (such as JAX/RPC and
JAXM), but provide their own APIs.

The most important value-added
features that don’t require us to use spe-
cialist APIs, but are instead based on
declarative configurations, include:
• Support for distributed transactions

and two-phase commit
• Load balancing
• Replication and failover
• Clustering
• Performance optimizations
• Connectors for integration with EIS

systems (SAP R/3, PeopleSoft, etc.)
• Connectors for management systems

(SNMP, CA-Unicenter, IBM Tivoli,
etc.)

• Support for pluggable middleware,
including JMS, JNDI, and ORB imple-
mentations, pluggable authentication
modules (PAM), etc.

• Support for automatic logging
• Support for wireless clients
• Support for hot deployment of Web

and business logic components

Some vendors, already recognizing
the role of application servers for inte-
gration, have supplemented their J2EE
application servers and focused them
directly on integration. Many of them
even specifically name them as such.
Such integration servers provide more
tools to access existing systems and
often provide out-of-the-box support
for technologies necessary for EAI.

Summary
J2EE provides solutions for advanced

EAI topics such as transaction, security,
and naming and directory integration.
The EAI architecture also can support
Web services, and is actually the prereq-
uisite for effective, low-latency e-com-
merce solutions.

Resource
• Juric, M.B., with Basha, S.J., Leander,

R., and Nagappan, R. (2001). Pro-
fessional J2EE EAI. Wrox Press.

AUTHOR BIOS
Matjaz B. Juric is the

author of Professional
J2EE EAI and

coauthor of
Professional EJB. He

holds a PhD in
computer and infor-

mation science.

Ivan Rozman is the
faculty dean at the

University of Maribor
and has many years
of experience in EAI
projects. He holds a

PhD in computer and
information science.

J2
SE

H
om

e
J2

E
E

J2
M

E

i.rozman@uni-mb.si

matjaz.juric@uni-mb.si

INT, Inc
www.int.com

19APRIL 2002

Java COM

Canoo
Engineering AG

www.canoo.com/ulc/

Java COM

20 APRIL 2002

Applications need to prevent improper access to data and
ensure that data integrity can be maintained. To guard against
such compromises, developers must first have an awareness
of resource sensitivity. Proper safeguards need to be in place
within the workplace and development process to ensure that
sensitive information isn’t inadvertently made available for
improper viewing and/or modification.

This article describes certain aspects of J2EE declarative
security, in particular how security constraints are used with-
in the Web tier to protect access to resources with varying lev-
els of sensitivity. It also illustrates the use of a sample applica-
tion as a tool for determining the behavior of a given applica-
tion server’s constraint matching. I’ll also share some of the
issues I encountered while developing and deploying the
sample application across several application server plat-
forms.

While the J2EE platform strives to provide an interoperable
platform for developing and deploying secure Web applica-
tions, ambiguities in the early specifications have led to
important implementation differences across vendors. I’ll

explore some of the effects these differences have on the
development of secure, interoperable applications.

J2EE Security
Authentication is the act of determining the identity of a

user based on the supplied credentials. Determining whether
a user should be granted access to protected resources is
called authorization.

J2EE uses lazy authentication – users aren’t challenged to
offer proof of identity until they request access to a protected
resource.

Authentication may be performed by an application using
one of the following mechanisms:
• HTTP basic authentication: User’s credentials collected by

a Web browser
• HTTP digest authentication: Optionally supported by J2EE

vendors
• HTTP client authentication: Uses digital certificates
• HTTP form-based authentication: Uses an application

form to collect credentials

J2
SE

H
om

e
J2

E
E

J2
M

E

21APRIL 2002

Java COM

SilverStream
Software

www.silverstream.com/challenge

Java COM

22 APRIL 2002

The J2EE platform prescribes the use of a declarative language
within the deployment descriptors of the components to imple-
ment container-managed security, also known as declarative secu-
rity. Along with declarative security, the servlet and EJB specifica-
tions require a set of APIs for implementing programmatic security.

The language used to declare security policy within Web
applications is composed of a set of XML elements within the
deployment descriptor web.xml. A typical example of the fun-
damental element, <security-constraint>, is given in Listing 1.
(Listings 1-3 can be downloaded from www.sys-con/java/
sourcec.cfm.) The anatomy of a <security-constraint> declara-
tion consists of a number of subelements that define the
implementation of the declared piece of policy.

The Web resource element identifies the criteria from the
resource request to be used in determining a match for the
resource. In the case of the constraint in Listing 1, a resource,
prefix-get-manager, can be identified by a request for any
resource that begins with the given URL pattern, in this case a
directory structure within the servletPath – in other words,
anything within the directory structure /acme/widget relative
to the root directory of the application.

The http-method element specifies which type of HTTP
request is constrained by this declaration. In this case GET
requests are constrained. In short, all HTTP GET requests for
resources in the /acme/widget directory of this application are
considered a match for this constraint. Four types of URL pat-
terns may be used in the declaration of a security constraint:

exact, prefix, extension, and universal. The type of URL
pattern specified is important in determining the

best match for a particular resource request.
This is covered later in the discussion about

handling overlapping constraints.

The <auth-constraint> element is used to
specify the logical set of privileges required to

access any resource for which this constraint is a
match. It contains zero or more role-name ele-

ments; role-names are used to represent logical sets of
privileges. Multiple role-name elements designate an OR rela-
tionship for access privileges. In other words, if a particular
<auth-constraint> element contains two role-name elements,
manager and developer, then users with manager or develop-
er privileges may access the protected resource. In the case of
Listing 1, protected resources that match this constraint are
accessible only by users with manager privileges.

The <user-data-constraint> element consists of one
subelement, <transport-guarantee>. This subelement is used
to specify the requirements for the transport or transmission
of the resource back to the client. Its value may be one of the
following: NONE, INTEGRAL, or CONFIDENTIAL. INTEGRAL
and CONFIDENTIAL each declare that a secure method of
transport is required for access to the resource. At this time,
most implementations implement this declaration by assert-
ing that the request is being made over SSL. The Servlet 2.3
specification states that upon determining that the current
transport is inadequate for accessing the requested resource,
the servlet container must redirect the request to a secure
mechanism – specifically SSL. At the time of this writing, some

vendors implement this requirement; others simply deny
access to the resource. Either approach protects the resource
from inadvertent compromise.

Overlapping Constraints
Earlier I mentioned the four types of URL patterns that can

be used to match a resource request. The fact is, these URL
patterns could result in overlapping constraints – meaning
there could be more than one match. This is where it’s impor-
tant to emphasize that the specified algorithm is one of best
match, that is, the algorithm must determine which of the set
of constraints matching a particular resource request is the
most precise. Differences across application server platforms
can be found in this area. Being unaware of your vendor’s
handling of overlapping constraints puts your sensitive
resources at risk.

It’s extremely important to understand the order of prece-
dence for evaluating URL patterns. The algorithm is intended
to be implemented such that (in descending order of prece-
dence):
• Exact matches take precedence over prefix and extension

matches.
• Prefix matches take precedence over shorter prefix matches

and extension matches.
• Extension matches take precedence over universal matches.
• Universal matches, specified with a URL pattern of “/”.

Using this description of the algorithm, we can define four
constraints that would overlap for certain resource requests
and describe the expected behavior. Given the constraint dec-
larations in Listing 2, we can trace the matching behavior for a
given set of resource requests.

First, let’s describe the policy that results from the con-
straint declarations. All HTTP GET requests for resources that
end with an .html extension require developer privileges,
except for those .html files within the /acme/widget and the
/acme directories. The /acme/widget directory requires man-
ager privileges and the /acme directory allows access only to
administrators and junior administrators. The /acme/widg-
et/admin.html file is an exception in that it explicitly requires
a role of administrator.

HTTP GET requests for resource access to /index.html
match the extension-mapping constraint and access is con-
strained to users with developer privileges.

HTTP GET requests for resource access to /acme/
admin.html match the prefix-mapping constraint for the
/acme directory and access is granted to users with
junior_administrator or administrator privileges.

HTTP GET requests for resource access to /acme/
widget/index.html match the prefix-mapping constraint for the
/acme/widget directory and access is granted only to users with
manager privileges. This match is best because the URL pattern
match is longer and therefore more precise than /acme/*.

HTTP GET requests for resource access to /acme/widg-
et/admin.html exactly match the mapping constraint for the
/acme/widget/admin.html file and access is granted only to
users with administrator privileges. This match is best because

J2
SE

H
om

e
J2

E
E

J2
M

E

“It’s vitally important to understand that mistakes
in the declaration of

policy in the deployment
descriptors will lead to protected

resources being inappropriately available”
“

23APRIL 2002

Java COM

SpiritSoft
www.spiritsoft.com/climber

Java COM

24 APRIL 2002

it’s an exact match between the requested servlet path and the
URL pattern, and is therefore more precise than the extension
and prefix mappings.

Differences Across Vendors
I mentioned previously some ambiguities in versions of

the Servlet specification prior to 2.3 that have led to multiple
interpretations of the constraint-matching algorithm and
therefore differences in implementation across vendors. It’s
possible to encounter implementations that are closer to a
first-match algorithm than to a best-match. In these cases the
search for a match ends immediately on finding a match; that
is, there’s no attempt to find the most precise match across a
set of overlapping constraints. If we look at the previous exam-
ple, a request for access to /acme/widget/admin.html poten-
tially would grant access to a junior administrator. This is
clearly not what is intended by the application developer, as
seen by looking at the deployment descriptor.

The provided sample application aids in determining the
implementation behavior for any given J2EE application serv-
er platform. I’ll discuss the development and use of this appli-
cation shortly.

Compromise Through Configuration
In addition to vendor algorithm differences, it’s vitally

important to understand that mistakes in the declaration of
policy in the deployment descriptors will lead to protected
resources being inappropriately available. For instance, devel-
opers who want to protect all spreadsheets within an applica-
tion may be inclined to use an extension-type URL pattern.
While this pattern declares that all resources with extensions
of type .xls are constrained to users with manager privileges, a
prefix constraint for a directory containing spreadsheets has a
less restrictive constraint. Listing 3 shows the constraint dec-
larations for this example, which illustrates the importance of
understanding the matching algorithm as well as the existing
policy language within an application when adding resources
to be served by the application. Without realizing that spread-
sheets are protected within the application by an extension-
type constraint, a developer may add a spreadsheet file to a
directory with less restrictive constraints.

Sample Application Goals
The sample was initially intended as an application that

would illustrate the behavior of the constraint-matching algo-
rithm. It became clear early on in the testing of the sample that
there were differences between application server platforms

and that the application could be used to help discern how a
given platform would behave.

The application consists of a set of JSP pages that are
declared as being of varying levels of sensitivity.

The sample is designed so that it renders the actual con-
straint that should match to each link within the pages and the
expected behavior when the user is logged in with manager
privileges and not developer privileges (see Figure 1).

Deployment of Sample Application
To deploy the sample application to your environment:

1. Download the sample application, in the form of a standard
WAR file, from www.sys-con.com/java/sourcec.cfm.

2. Deploy the application according to your application serv-
er’s deployment instructions. If you need to acquire an
application server to run the sample, see the resources sec-
tion at the end of the article.

3. Have a user with manager (not developer) privileges avail-
able.

Running the Sample Application
To run the sample:

1. Start the application server.
2. Initiate a request for the default welcome file with

http://localhost:9090/constraintmatching, where the port
is determined by the application server (HP-AS uses 9090
and Tomcat uses 8080 out of the box).

3. Log in as the user with manager privileges.
4. Use the links on the subsequent pages, observing the

behavior and comparing it with the expected outcome
described in the pages.

Lessons Learned
I learned a number of lessons with regard to interoperabil-

ity during the development of the sample application. Since
the application was developed using HP-AS 8.0, the sample
deployed and ran flawlessly on this platform. It was during the
testing of the application on Jakarta Tomcat and BEA
WebLogic Server 6.1 that I realized changes were needed to
maximize interoperability.

The most significant changes were required for deploying
the application to Apache’s Jakarta Tomcat environment.
Given the application’s initial deployment descriptor, it was
obvious that the algorithm wasn’t implemented as expected. A
post to the Tomcat developer mailing list quickly resolved the
issues.

The implementation, as expected, follows the guidelines
outlined by the Servlet 2.3 expert group. Though the specifica-
tion clearly reads as a best-match algorithm, the expert group
agreed that the Tomcat and J2EE 1.2 and 1.3 beta reference
implementations’ constraint processing, being first-match,
was simple and sufficient.

Tomcat’s implementation of the constraint-matching algo-
rithm requires that the constraints appear within the deploy-
ment descriptor in the order of precedence required for the
different types of URL patterns, including the need to sort pre-
fix-type constraints by URL pattern length. This is not an intu-
itive requirement; I’m more inclined to logically group con-
straints based on the URL pattern or the <auth-constraint> so
as to make the policy more readable. Tomcat’s implementa-
tion is a first-match algorithm rather than a best-match, and
this is why the constraints need to be so ordered. It seems to
me that this implementation is more error-prone than imple-
menting the algorithm directly in the container. It does give
the well-informed developer the ability to tweak the algorithm
by ordering the constraints in the desired order of precedence;
however, it renders the access policy nonportable.

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 1 Constraint-matching application

AUTHOR BIO
Larry McCay, a

senior architect for
Hewlett-Packard, has

been designing and
developing software

for over 10 years.
Larry has been a

major contributor to
the Hewlett-Packard

Application Server
and Netaction

Platform and is
active within the JCP

in the area
of security.

25APRIL 2002

Java COM

Compuware
Corp.

www.compuware.com/products/optimalj

Java COM

26 APRIL 2002

For deployment on BEA WebLogic Server 6.1, there was a
bit of annoyance in that WLS uses the realm-name element
within the login-config to determine the WLS realm imple-
mentation for authentication. Once that was resolved and
changed in the deployment descriptor, the application ran
fine. One interesting behavior seen in WLS and not HP-AS or
Tomcat was that when an authenticated user has inadequate
privileges to access a resource, the user is asked to reauthenti-
cate. The other platforms tested simply deny access.

Another difference that was uncovered results from having
multiple constraints of equal type match a given request. The
Servlet 2.3 specification isn’t clear on how to handle this situ-
ation. The deployment descriptor of the sample application
has two constraints that are identical except in the <transport-
guarantee> declaration. On HP-AS and Tomcat the first of the
two best-matching constraints is selected due to the algo-
rithm implementation for each of the application servers.
WLS apparently maps the constraint internally such that iden-
tical constraints, in terms of URL pattern and http-method,
overwrite each other. This leads to selection of the last-match-
ing constraint. Currently, this type of configuration should be
considered programmer error; as a result, since it isn’t clear
what an application server should do in this event, resources
may be accessible differently across application servers. The
specification should specify that ambiguous constraints –
even when a result of programmer error – be handled a par-

ticular way. This is likely to be addressed in an effort currently
under way under the Java Community Process (JCP).

The deployment descriptor for the sample was changed to
specify “filerealm\” as the realm-name, because this is the
default realm for WLS out of the box, and HP-AS and Tomcat
don’t require anything in particular. In addition, the two prefix-
type constraints that match the same request have been ordered
to align with the behavior of HP-AS and Tomcat when process-
ing multiple constraints for a given request. To make the deploy-
ment descriptor more portable, these constraints should be
consolidated into one. I’ve left that as an exercise for the reader.

For additional fun with the sample application, change the
order of the constraints in the web.xml file and observe

behavior changes – especially within Tomcat.

Development Ramifications
The most important lesson learned is that, due to

the differences across vendors, the development of
portable applications requires specific ways of declaring
policy and structuring the directories within an applica-
tion.

Developers should provide resources within a flatter
directory structure and place the constraints in the

deployment descriptor in the order of precedence instead
of having directories and subdirectories with varying levels of

sensitivity, break these into separate directory structures off
the application root. A directory structure such as /public/
manager/administrator, for example, should be broken into
three separate directories, for example, /public, /manager,
and /administrator.

Ordering of constraints within the deployment descriptor
should be as follows:

• Exact matches
• Prefix matches
• Extension matches
• Finally, universal match

Also, due to the way that multiple matches for the same
URL patterns and HTTP methods are handled across ven-
dors, developers should consider the declaration of multiple
constraints of the same type for a given URL pattern/http-
method combination as an error in declaration. That is, until
there are specific tests for these cases in the Technology
Compatibility Kits (TCK) for the Servlet/J2EE specifications.
J2EE 1.4 should contain rigorous tests in all these areas. Until
then, developers need to ensure that there is only one con-
straint that will be considered the best match for any given
request.

As development tools for J2EE application develop-
ment, assembly, and deployment mature, much of the
direct editing of the deployment descriptors is eliminated –
possibly making it more difficult to police these issues. Be
aware of how your tool orders the constraints within the
deployment descriptor so as to ensure policy portability
across vendors.

A Brighter Future
An effort is under way within the JCP to formalize a con-

tract between container vendors and authorization service

providers. While this effort is focused primarily on the integra-
tion of external security providers, J2SE and J2EE, and appli-
cation servers with enterprise policy infrastructure, there is an
important side effect that will aid in the area of constraint pro-
cessing. In order to license the technology of this effort,
authorization providers and applications server vendors alike
will need to pass the TCK that corresponds to the SPI contract.
This TCK will also be included in the J2EE 1.4 TCK and provide
rigorous tests of security constraint processing. Therefore,
J2EE 1.4 will offer a more portable environment for J2EE
declarative security.

Conclusion
The realization of a secure, interoperable Web application

development platform is within reach. In the meantime, care
must be taken in defining policy through the declarative lan-
guage built into the J2EE platform so that portability across
vendors will be maintained. In addition, careful evaluation of
an application’s declared policy, along with knowledge of the
vendor’s algorithm implementation, is required to deploy
existing applications with protected resources to new applica-
tion server platforms.

Resources
• HP-AS 8.0 – the free J2EE Application Server: www.hpmid-

dleware.com
• Apache Jakarta Tomcat: http://jakarta.apache.org/tomcat
• BEA WebLogic Server: www.bea.com
• Servlet 2.3 Specification: http://jcp.org/aboutJava/commu-

nityprocess/first/jsr053/index.html

J2
SE

H
om

e
J2

E
E

J2
M

E

lawrence_mccay-iii@hp.com

Due to the differences across vendors,

the development of portable
applications requires specific ways of declaring

policy and structuring the directories within an application”“

27APRIL 2002

Java COM

Precise Software
www.precise.com/jdj

Java COM

28 APRIL 2002

J2
SE

H
om

e
J2

E
E

J2
M

E
O B F U S C A T I O N

Java source code is compiled into an
intermediate code called bytecode, and
the Java Virtual Machine (JVM) inter-
prets this bytecode directly. It’s the byte-
code that makes Java class files com-
pletely platform-independent. Not only
is the bytecode easy to decompile, but
the descriptive variable names are
included in it (and thus in the decom-
piled source code), making it much eas-
ier to understand the decompiled
source code. This presents another for-
midable roadblock to deploying com-
mercial Java-based software.

This article outlines a technique to
protect JSP-based applications in such
a way that they can be deployed to cus-
tomers without giving away source
code or class files that are easy to
decompile. This technique employs
features of the Java 2 Platform,
Enterprise Edition (J2EE) Web applica-
tion specification and a bytecode pro-
tection technology called obfuscation.
A detailed example is provided that
enables you to better understand the
issues and the solution.

JavaServer Pages (JSP) provide a rapid
development and deployment analog to
Active Server Pages (ASP) with a few sig-
nificant advantages. Servlet source code
is generated from the .jsp files in the
form of .java files. These are then com-
piled into standard servlet .class files.

These servlet classes are loaded into
a server (referred to as a container in
Java nomenclature). The container
routes JSP requests to the corresponding
class. With ASP, the source code is
actively interpreted at the server and the
response is sent back to the client. With
JSP, the Java bytecode is preloaded into
the container, making responses to
requests highly efficient.

Web Application Architecture
The Web application specification

(http://java.sun.com/products/servlet/
2.2/index.html, section 9) allows JSP
applications to run on any platform and
in any vendor’s J2EE-compliant contain-
er. It specifies a standard directory
structure to hold static content (e.g.,
HTML pages and images), JSPs, servlets,
and supporting Java classes. In addition,
it defines a deployment descriptor – an
XML file that conforms to a document
type definition (DTD) found at
http://java.sun.com/j2ee/dtds/web-
app_2_2.dtd. The deployment descrip-
tor defines metainformation about the
application to the container. This can
include global variables called context
parameters, servlet definitions and their
initialization parameters, and URL map-
pings.

Since generated classes from JSP files
are servlets, we’ll see that using servlet
definitions and URL mappings enables
us to deliver a JSP application without
the source code found in the .jsp files.

The following is an example of a Web
application directory structure. Re-
quired elements are in bold face:

MyApp/

index.html

processFunctions.jsp

images/

logo.gif

WEB-INF/

web.xml

classes/

HTMLUtils/

taglib/

Note: The taglib and classes directo-
ries are required only if the application
uses tag libraries (see http://java.sun.

com/j2ee/tutorial/1_3-fcs/doc/JSP-
Tags.html for more information) or sup-
porting classes, respectively.

JSP Life Cycle
Application containers that support

JSPs go through the following general
steps during development:
1. Java source generation
2. Java source compilation
3. Resultant servlet class installation

and content delivery

Changes made to a JSP file during
development trigger an automatic
sweep through the steps listed above,
which helps in the ability to rapidly
develop JSP. However, there’s a certain
amount of overhead, including a file-
system check to determine if a file has
changed for every request. Therefore,
when a JSP (or Web application) is ready
to be deployed, it’s better to turn off the
dynamic generation/recompilation fea-
tures.

It’s important to note that the code
running in the container that’s servicing
requests is the compiled .class file(s),
not the .jsp file. This is the first step in
eliminating the need to distribute the
.jsp files. The other steps involve config-
uration issues outlined in more detail in
the example Web application discussed
later. For more information on the life
cycle of a JSP, go to http://java.sun.com
/j2ee/tutorial/1_3fcs/doc/JSPIntro4
.html.

Obfuscation
Obfuscation tools have gone through

at least two generations to date. The first
generation analyzed a group of class
files and replaced class, method, and
variable names with meaningless iden-

WRITTEN BY
MICAH SILVERMAN

Amajor roadblock to using any of the server-side script-
ing architectures for developing commercial software is the fact
that (traditionally) the source code must be delivered to cus-
tomers when deploying applications.

Protecting Commercial JSP Applications
Take advantage of the benefits of JSP

29APRIL 2002

Java COM

eXcelon
Corporation

www.exln.com

Java COM

30 APRIL 2002

tifiers. As the obfuscator parsed the files,
it would internally keep track of map-
pings from the original identifiers to the
new (meaningless) identifiers. This
made the source code obtained from
decompilation much more difficult to
analyze and understand.

The code in Listing 1 is a small Java
application that uses typically descrip-
tive class and method names; the code
in Listing 2 is an obfuscated version.
(Listings 1–9 and additional source code
can be downloaded from the JDJ Web
site at www.sys-con.com/java/sourcec.
cfm.) It’s much more difficult to glean
functional information from the decom-
piled obfuscated code. An end user
would run both versions of the applica-
tion the same way (java VehicleApp).
Note that the method BasicVehicle
.showInfo() uses Java’s reflection classes
to avoid a very important shortcoming
in first generation obfuscation tools:
string literals are not obfuscated in any
way. String literals often give away infor-
mation about what is happening in the
code.

Figures 1 and 2 show the screen out-
put from the run of the regular and
obfuscated versions, respectively.

Second-generation obfuscation tools
often provide a facility to encrypt string
literals and will also rearrange certain
code blocks, such as loops, to be more
confusing.

An interesting side effect of obfusca-
tion is that the resultant class files are
usually smaller due to the shortening of
class, method, and field names. Some
second-generation obfuscators even
claim a performance improvement
because of the way the code is
rearranged.

Many obfuscation tools offer the
option of using “illegal” identifiers.
These identifiers don’t conform to the

bytecode specification in the Java
Language Specification. Most (current)
JVMs will still work with these identifiers
while many decompilers won’t. The per-
ceived advantage in foiling decompilers
is not worth the risk that the code you
deliver won’t work when a client updates
his or her JVM at some point. This fea-
ture should always be disabled. It’s
important to note that obfuscation,
even the kind that encrypts string liter-
als, normally results in perfectly legal (if
confusing to humans) bytecode.

Sample Web Application
Application Overview

The example Web application is sim-
ple; it has a number of features that
highlight the JSP life cycle and show how
to break the dependence on the original
.jsp source code files and the resultant
servlet .class files. These features, listed
below for reference, are described in
more detail as the example is analyzed:
• Self-referential links
• Included JSP files
• Supporting class files
• Context parameters (global to the

Web application)
• Error page support

Listing 3 provides all the source files
that make up PopQuiz, the sample
application. A user can select from a list
of multiple-choice quizzes. The ques-
tions are displayed in a random order as
is each answer. The application keeps
track of the order of the questions and
answers that a particular user receives,
along with the user’s answers and the
correct answers. A review of the quiz,
highlighting right and wrong (or unan-
swered) questions, and a score are given
when the user submits the quiz for grad-
ing. The quizzes are organized within
the Web application’s directory tree as a

set of XML documents. Listing 4 pro-
vides the DTD and Listing 5 the sample
quizzes.

The Tomcat application server, a
subproject of the Apache Jakarta project
(http://jakarta.apache.org), was used to
test the Web application. Note, however,
that the Web application should run in
any J2EE-compliant container as is. The
Xerces XML library, part of the Apache
XML project (http://xml.apache.org),
was used for the XML parsing. The flow
through the application is as follows:
• index.jsp: Shows available quizzes
• TakeQuiz.jsp: Displays quiz
• GradeQuiz.jsp: Displays quiz results

and score

If any of a number of error condi-
tions occur (bad quiz file name, excep-
tions on XML parsing, etc.), the JSP error
page Error.jsp is displayed. Each of the
above mentioned files has an include
reference to common/GlobalHeader-
Vars.jsp. A number of global variables
are defined in this file.

Self-referential links, as well as links
to the other pages, illustrate an impor-
tant feature in eliminating the need for
the .jsp source files: URL references
won’t change throughout the applica-
tion. This preserves an important fea-
ture, one that makes JSP technology
attractive – the ability to rapidly develop
and deploy.

The included common/Global-
HeaderVars.jsp file illustrates an aspect
of the JSP servlet generation life cycle.
Included files are integrated into the JSP
and then a .java file is generated. Since
the included file is never referenced
directly (through links or form submis-
sions), the original source doesn’t need
to be referenced in the deployment
descriptor (WEB-INF/web.xml, see
later).

Supporting class files contained in
the WEB-INF/classes directory are auto-
matically included in the container’s
classpath. No special referencing or
classpath manipulation is required
when delivering a Web application in
general, or in the case of the special
structure we’re examining here.

Context parameters found in the
deployment descriptor (WEB-INF/web
.xml) are utilized in the same way
whether the page is a JSP or a servlet.
Error pages are a convenient mecha-
nism for forwarding to a JSP in the event
of an exception. Ordinarily, the contain-
er would be responsible for displaying
information when an exception occurs.
The content of this information varies
from container to container and usually
shows a stack trace, which is not very

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 1 Regular version’s output FIGURE 2 Obfuscated version’s output

? ? ? ? ? ?O B F U S C A T I O N

31APRIL 2002

Java COM

Altova
www.altova.com

Java COM

32 APRIL 2002

useful to the average
user. The error-page
mechanism allows for
a customizable error page that can have
the same look and feel as the rest of the
application. In the sample application,
the error page displays a single mean-
ingful exception string along with links
to get back into the application.

Listing 6 provides the original
deployment descriptor; Listing 7 shows
the modified deployment descriptor.
Figures 3 and 4 show screenshots of the
same quiz in a different order. The
“Refresh Quiz” button can be clicked to
show how the application automatically
scrambles questions and answers.

Next Steps
We now need to generate and com-

pile the .java files. The resultant class
files will be referenced from a modi-
fied deployment descriptor. At that
point, the original .jsp files will no
longer be needed. If the class files were
obfuscated as outlined above, it would
provide a reasonably safe way to deliv-
er a Web application commercially.
Safe in this context refers to protecting
the original source code from reverse-
engineering. It should be noted that
without obfuscation, the class files
aren’t much more protected than the
original source files.

JSP to Java Source Generation
Ordinarily, the container is respon-

sible for generating .java files from the
.jsp source files, compiling the .java
source files, loading the resultant class
files into the container, and delivering
the content to the client. By visiting each
page in the application, we could rely on
the container to generate the class files
and then reference these class files in
the deployment descriptor. This has two
drawbacks: the generated class files typ-

ically have cryptic or long names (here’s
a Tomcat example:_0002fTakeQuiz_
0002ejspTakeQuiz_jsp_0.java), and
development and deployment become
increasingly difficult to maintain this
way.

Most containers provide command-
line or GUI utilities for manually gener-
ating the .java files from the representa-
tive .jsp files. Usually this is simply a
command-line interface to the same
classes that generate the .java files on
the fly. These utilities provide a more
manageable way to generate the entire
application at once. Convenient switch-
es are also provided to allow the entire
application to be generated in a particu-
lar Java package. Assuming the following
directory structure:

PopQuiz/

Error.jsp

GradeQuiz.jsp

index.jsp

TakeQuiz.jsp

common/

GlobalHeaderVars.jsp

quizzes/

Geography.xml

PopQuiz.dtd

SimpleMath.xml

WEB-INF/

web.xml

classes/

com/

MPowerIT/

io/

XMLFileFilter.class

quiz/

Question.class

Quiz.class

The following Tomcat command (run
from TOMCAT_HOME):

jspc -p com.MPowerIT.servlet -d

webapps\PopQuiz\WEB-INF\classes -

webapp webapps\PopQuiz

will generate the .java files in the
com.MPowerIT package and place the
resulting .java files within the Web
application’s classes directory. Re-
member that anything under WEB-
INF/classes is automatically included in
the classpath. Now, we can compile the
.java files (and obfuscate the class files),
remove the .jsps, and edit the web.xml
deployment descriptor file to properly
reference the class files. Note that the
file GlobalHeaderVars.java will also be
generated but isn’t needed as it’s incor-
porated into the other files. It can be
safely removed. Here’s the resultant
directory structure (with the .jsp files
removed):

PopQuiz/

quizzes/

Geography.xml

PopQuiz.dtd

SimpleMath.xml

WEB-INF/

web.xml

classes/

com/

MPowerIT/

io/

XMLFileFilter.class

quiz/

Question.class

Quiz.class

servlet/

Error.class

GradeQuiz.class

TakeQuiz.class

index.class

The Deployment Descriptor
The final and crucial step is editing

the web.xml deployment descriptor.
Listing 7 contains the complete con-
tents of the file. The <servlet> and
<servlet-mapping> sections allow us to
control how the application is
accessed:

…

<servlet>

<servlet-name>index</servlet-name>

<servlet-

class>com.MPowerIT.servlet.index</serv

let-class>

</servlet>

…

<servlet-mapping>

<servlet-name>index</servlet-name>

<url-pattern>index.jsp</url-pattern>

</servlet-mapping>

…

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 3 Original Quiz

FIGURE 4 Refreshed Quiz

O B F U S C A T I O N

33APRIL 2002

Java COM

AltoWeb
www.altoweb.com

IBM
ibm.com/websphere/ibmtools

Java COM

34 APRIL 2002

35APRIL 2002

Java COM

The <servlet> tag associates a
name with the servlet and refer-
ences a class. The <servlet-name>
tag has nothing to do with how the
servlet is accessed and is strictly
for use within the deployment
descriptor. The <servlet-map-
ping> tag defines how the servlet
will be accessed. The <url-pat-
tern> tag is the key to keeping all
our self-referential and internal
links consistent. It’s this tag that
allows a URL like www.MPowerIT.
com/Pop-Quiz/index.jsp to be
valid even though there’s no
longer an index.jsp file.

Testing the Application
The original application is

contained in the file PopQuiz.zip,
which includes the .jsp source
files. Another version of the appli-
cation is available in the file
CommercialPopQuiz.zip, which
includes the .java source of the
generated JSP. The obfuscation of
the class files is left as an exercise
for the reader. To be as effective as
possible, however, remember to
use an obfuscator that not only
rewrites all class, method, and
field names, but also encrypts
string literals. See Listing 8 for an
example of a decompiled
GradeQuiz.class file. Listing 9
shows the decompilation of this
same file after it’s been obfuscat-
ed. The obfuscator KlassMaster
(www.zelix.com) was used to
obfuscate the class file; it encrypts
string literals.

The application uses the
Xerces DOM XML parser found in
the Apache Foundation’s XML
project, http://xml.apache.org.
The xerces.jar file needs to be in
the container’s classpath. This
Java archive (JAR) comes with
Tomcat in its <TOMCAT_HOME>
/lib directory. All .jar files in the lib
directory are automatically
included in Tomcat’s classpath, so
no additional configuration is
required when using Tomcat.

Assuming that your classpath
is set properly as described above,
you should be able to expand the
.zip archives in the appropriate
place for your container and run
the sample application. For
Tomcat, you would expand the
archives in <TOMCAT_HOME>
/web-apps. The URLs to access

the Web applications are
http://<tomcathost>:<tomcat-
port>/PopQuiz/index.jsp and
http://<tomcat-host>:<tomcat-
p o r t > / C o m m e r c i a l P o p -
Quiz/index.jsp. The output you
get in your browser should be
exactly the same in either case.

Summary
JSP technology provides for

rapid development and deploy-
ment as well as efficient deliv-
ery of content. Ordinarily, the
cost of this is inclusion of the
source code, in the form of .jsp
files, with the application. By
using the deployment descrip-
tor’s features, obfuscation, and
the fact that compiled JSPs are
servlets, developers can take
advantage of the benefits of JSP
without the commercial down-
side.

A number of advanced JSP
technologies such as the use of
beans and custom tags were not
covered in this article. The out-
lined techniques for protecting a
JSP-based application apply to
these other facets of the technolo-
gy as well.

Resources
• Servlet Specification: http://java

.sun.com/products/servlet/2.2
/index.html

• web.xml DTD: http://java.sun.
com/j2ee/dtds/webapp_2_2.
dtd

• Custom Tags in JSP: http:
//java.sun.com/j2ee/tutori-
al/1_3fcs/doc/JSPTags.html

• JSP Life Cycle: http://java.
sun.com/j2ee/tutorial/1_3fcs/
doc/JSPIntro4.html

• Apache Jakarta Project: http://
jakarta.apache.org

• KlassMaster Obfuscator: www.
zelix.com

• Apache XML Project: http://xml.
apache.org

AUTHOR BIO
Micah Silverman has been working in software
development and computer security since the
1980s. He’s been developing Java applications
since the language was released in 1995. Micah is
a Sun Certified Java Programmer and an ISC2
CISSP (Certified Information Systems Security
Professional).

J2SE
H

om
e

J2E
E

J2M
E

IBM
ibm.com/web-

sphere/ibmtools

O B F U S C A T I O N

mps@MPowerIT.com

keith.brown@sys-con.com

By the time you read this, JavaOne will
be over and I’ll have experienced my
first visit to the world’s grandest Java

conference. For various reasons I’ve never
been able to attend before, but this year (knock
on wood), the gods have smiled on me and the
constellations are positioned in my favor.

There are many reasons why I’m look-
ing forward to San Francisco. I’m assured
the sushi is divine. Can’t wait to see the
legendary Alcatraz, or the city in which
Dirty Harry erased the scum from its
mountainous streets and posed menacing
and probing questions to his quarries.

But most of all, I’m looking forward to
meeting the community. Ahh! The oft-
cited Java community. You can’t see it, you
can’t touch it, but it’s talked about and fre-
quently referenced.

How do we define this community? It’s
a curious beast indeed and my question is:
Does the average Java developer feel a part
of the community? Do you feel a part of it?

Until you visit a Java conference or per-
haps a Java users group meeting, the com-
munity is virtual (except, perhaps, for your
colleagues and friends). It relies on the
Web, e-mail, and publications such as JDJ
to be the glue that binds it together. Virtual
community Web sites, modeled in a simi-
lar fashion to Hagel and Armstrong’s
vision of community-oriented business
models (Net Gain by John Hagel and
Arthur G. Armstrong), assist in the bond-
ing process. Some, such as http://java.
isavvix.com, are well worth a visit for
forums, neat code samples, and happen-
ings. Despite this, it can be a lonely old life
coding away, perhaps in a small team, not
actually meeting face to face with other
Java programmers.

However, the community is not just
made up of programmers and coders. It’s
also made up of companies, software
vendors, IT managers, educators, and
perhaps even those who have only a
vague involvement with technology but
are curious about Java. Java seems to
have a stronger sense of community than
any other language (Sun even popular-
ized the word with their “Java Com-
munity Process”). Perhaps this is be-
cause of the robust sense or perception
that there’s a battle going on against an
easily demonized enemy. There’s a war to
be won and, just as societies pull togeth-
er during times of war, the Java commu-
nity has been strongly united and has
flourished since its inception seven years
ago when there was a ready-made “bad-
die” that we could unite against.

I’m curious. Is the Microsoft C# com-
munity as loyal and healthy as the Java
community? Perhaps it still needs time to
mature. Maybe someone familiar with
both can let us know (www.sys-con.com
/java/). Is Java perceived as just as much
of a threat to C# as C# is to Java?

I, for one, am looking forward to put-
ting faces to the community and getting a
real sense of who we are, what we do,
what we sound like, and what we look like.
For that reason, JavaOne will be a very
interesting and, hopefully, fruitful experi-
ence.

I guess by virtue of the fact that you are
reading JDJ, you have at least some con-
tact with the Java community. But do you
feel a part of it? Do you think it’s useful to
attend a conference if you’ve never been
to one? To meet the rest of your commu-
nity?

J 2 S E E D I T O R I A LR
J2

SE
H

om
e

J2
E

E
J2

M
E

In Search of The Community

KEITH BROWN J2SE EDITOR

36 APRIL 2002

J 2 S E I N D E XX

In Search of The Community
How do we define the

Java community? It’s a
curious beast indeed and my
question is: Does the average
Java developer feel a part of
the community? Do you feel

a part of it?
by Keith Brown

JDiff – What Really
Changed?

One of the most common
questions Java developers

ask after downloading a new
version of a product is: “What

really changed?” JDiff is an
open source Java tool, based
on Javadoc and developed by

the author, that produces
HTML documentation

describing the precise API
changes between two ver-

sions of a product.
by Matthew B. Doar

A Multiple
Application Launcher
I’d like to have the flexi-

bility to run several Java 2
applications concurrently in
the same JVM. These appli-
cations need to function in a
secure environment that iso-

lates them from each other to
the greatest extent possible.

The use of this multiple
application launcher (MAL)

should be transparent to the
application.

by Kirk Pepperdine

Prescriptions for Your
Java Ailments

Unlike the doctor who works
for your HMO, I won’t require

a copayment for each visit nor
ask you to fill out long ardu-
ous forms. I’m here to help

readers of Java Developer’s
Journal find a cure for their

Java system ills.
by James McGovern

36

38

44

58

Java COM

AUTHOR BIO
Keith Brown has been involved with Java for many years.When he’s not coding up client solutions for a European Java company,

he can be found lurking in the corridors of conferences all around the world.

37APRIL 2002

Java COM

IBM
ibm.com/db2/outperform

Java COM

38 APRIL 2002

JDiff – What Really Changed?

J D I F F R E P O R T

This article uses JDiff to show what
changed between J2SE 1.3 and J2SE 1.4,
and describes how developers can use
JDiff to document the changes between
two versions of their own products as
easily as running Javadoc.

What Changed Between J2SE 1.3 and J2SE 1.4?
Release notes are usually high-level

descriptions of feature changes. Product
reference manuals tend to be large. And
it’s hard to compare different product
versions in Web browsers’ windows.
Sun’s J2SE 1.4 product, with all its new
features, is no exception. When you
want to know exactly what changed
between two versions of a file, “diff” is
the familiar command-line tool for the
job. When you want a precise compari-
son between two Java APIs, I suggest
using JDiff.

Figures 1 and 2 show typical HTML
documentation generated by JDiff. In
this case, the J2SE 1.3.0 API and the J2SE
1.4.0 API are compared using JDiff 1.0.6.
Figure 1 is a screenshot of some of the
packages that were changed between
versions, and Figure 2 shows the details
for a particular class, java.lang.Throw-
able. Every change in the API is report-
ed, from new methods and fields to
changes in parameter types and which
exceptions are thrown. Even the
changes in the documentation for each
class and method can be reported.

The best way to view a JDiff report is
with a Web browser. (The report com-
paring J2SE 1.3 and J2SE 1.4 can be
found at www.jdiff.org.)

What a JDiff Report Tells You
The HTML report generated by JDiff

describes the differences between two
Java APIs. The right-hand frame initially
contains a summary of the packages
that were removed, added, or otherwise
changed in some way. There are links to
other JDiff-generated pages that des-

cribe the changes for each package and
class in more detail. To help recall what
each package and class is used for, the
first sentence of the Javadoc comment
(a “documentation block”) in the source
code is shown to the right of each entry.

The layout of the report resembles
Javadoc-generated HTML; to prevent
confusion, JDiff uses a different colored
background and all links from JDiff
pages to Javadoc HTML pages are in a
monospaced font.

Indexes
A good question whenever an API

changes is: “What was removed?” This is
because removed (and changed) con-
structors, methods, and fields will cause
an application to fail, ideally at compile
time. Constructors, methods, and fields
that were newly added are less likely to
cause an application to fail. JDiff pro-
vides indexes of which packages, class-
es, constructors, methods, and fields
were removed, added, or changed. It
also provides indexes of all the removals,
additions, and changes. The indexes are
all HTML links, but they’re not under-
lined, so they’re easier to read quickly.

The indexes are a particularly useful
feature when JDiff is used to track
changes in an API as a product is being
developed. Each part of the team can
see precisely what has changed between
the different versions.

Links
One feature that makes JDiff-gener-

ated reports useful is the large number
of HTML links in a report. Every JDiff
package and class page has links to the
Javadoc-generated HTML pages for the
specific package or class, making it easy
to refer to an API’s existing documenta-
tion. The JDiff navigation bar contains
links to the page for each class’s pack-
age, and also to the top-level summary
page. Just like Javadoc, there are also

links to the previous and next package
or class, and to the sections within a
page. All pages have links to nonframe
versions of the page for browsers (and
users) that can’t deal with HTML frames.

Features for Developers
Two useful features for API develop-

ers are the ability to track changes in
documentation and statistics about the
changes between two APIs. This infor-
mation is generally less useful to cus-
tomers who use the API, so the features
are optional in all JDiff reports.

Documentation Changes
JDiff can track changes in the

Javadoc comments in the source code
that’s used to produce Javadoc HTML.
While such changes are rarely of great
interest to customers, it’s very helpful for
developers to know how the description
of a method or field has changed during
the development of an API. Each
changed constructor, method, and field
has links to the old documentation, the
new documentation, and the highlight-
ed differences between the two. Figure 3
shows some of the documentation
changes between J2SE 1.3 and J2SE 1.4.

Statistics
Another good question whenever an

API changes is: “How much has
changed?” To answer this, JDiff can track
the statistics for how many constructors,
methods, and fields changed in a class,
how many classes changed in a package,
and so on. The formula is very simple:

Percentage Change = 100 x (Number of

Additions + Number of Removals + (2 x

Number of Changes))/ Total Number of

Packages or Classes in Both APIs

For example, suppose a Java API is
made up of 15 Java packages, and in the
next release of the API two new packages

WRITTEN BY
MATTHEW B. DOAR

One of the most common questions Java developers ask
after downloading a new version of a product is: “What really
changed?” JDiff is an open source Java tool, based on Javadoc and
developed by the author, that produces HTML documentation
describing the precise API changes between two versions of a
product.

Comparing Java APIs

J2
SE

H
om

e
J2

E
E

J2
M

E

39APRIL 2002

Java COM

Mongoose
Technology

www.portalstudio.com

Java COM

40 APRIL 2002

J D I F F R E P O R T

are added and one existing package is
removed so that there are now 16 pack-
ages total. Also suppose that 3 of the 16
existing packages have been changed. In
this example, the percentage change
between the two APIs is 100 x (2 + 1 + (2
x 3))/(15 + 16) = 29%. Using this formula,
if two APIs are identical, the percentage
change will be 0%, and if they’re totally
different, the percentage change
between them will be 100%.

JDiff reports the percentage changes
in each changed class, and also in each
changed package, by applying the for-
mula recursively. The percentage
changes are also shown sorted in HTML
tables in the report, and also in a format
suitable for importing to popular
spreadsheet applications. This makes it
easy to identify when testing and docu-
menting which parts of an API have
changed most between different ver-
sions.

Table 1 shows the percentage
changes for some popular APIs, not
including documentation changes.
Interestingly, the percentage change
between J2SE 1.2 and J2SE 1.3.0 was
about 11%, but was about 33% between
J2SE 1.3.0 and J2SE 1.4.0, confirming
opinions that the changes from J2SE 1.3
to J2SE 1.4 are larger than the changes in
the previous major release. The break-
down of the statistics for the core Java
classes show that Sun is very careful to
add or change only packages and class-
es, and that minor releases really do
contain only bug fixes, as opposed to
API changes.

How to Run JDiff on Your Own APIs
As shown in Figure 4, there are three

fairly straightforward steps for using
JDiff. Each step involves running
Javadoc, and can be executed at the
command line in a script or batch file, or

added to a makefile or Ant build file as
part of a build process.

Step 1: Use JDiff to generate an XML file
that represents the old API’s packages.

javadoc -doclet jdiff.JDiff

-docletpath ..\..\lib\jdiff.jar

-apiname "SuperProduct 1.0"

-sourcepath ..\SuperProduct1.0 <old

packages>

This step scans the source code of
the old API. The -doclet and -doclet-
path options are the standard options
used by Javadoc to run the JDiff doclet.
The apiname option creates a unique
identifier for the API, and the source-
path option indicates where to find the
Java packages that make up the old
API. <old packages> lists the precise
packages that are scanned, just like
Javadoc.

Step 2: Use JDiff to generate an XML
file that represents the new API’s pack-
ages.

javadoc -doclet jdiff.JDiff

-docletpath ..\..\lib\jdiff.jar

-apiname "SuperProduct 2.0"

-sourcepath ..\SuperProduct2.0 <new

packages>

This step scans the source code of
the new API, located in the “Super-
Product2.0” directory. The new API is
given the unique identifier of
“SuperProduct 2.0”.

Step 3: Use JDiff to compare the contents
of the two XML files and generate an
HTML report of the differences.

javadoc -doclet jdiff.JDiff

-docletpath ..\..\lib\jdiff.jar

-d newdocs -stats

-oldapi "SuperProduct 1.0"

-newapi "SuperProduct 2.0"

-javadocold "../../olddocs/"

-javadocnew "../../newdocs/"

..\..\lib\Null.java

The final step compares the
“SuperProduct 1.0” API and the
“SuperProduct 2.0” API, with links to
the Javadoc documentation in the old-
docs and newdocs directories, respec-
tively. The -d option makes the HTML
report generated by JDiff appear in the
directory newdocs\changes.html, and
the -stats option reports statistics about
the differences between the APIs. The
file Null.java is present only because
Javadoc has to read in at least one file,
even if the doclet doesn’t use it.

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 1 JDiff Report showing package changes

FIGURE 2 The changes in the class java.lang.Throwable

41APRIL 2002

Java COM

Interland
interland.com

Java COM

42 APRIL 2002

J D I F F R E P O R T

To make the JDiff report more use-
ful, it helps if there’s existing Javadoc
HTML documentation for both APIs for
HTML links from the report. It also
helps if there are Javadoc comment
blocks in the source code for the pack-
ages from each API, since they’re used
in the right-hand summary text in each
entry in the report; however, you don’t
need them to compare APIs. You can
even compare the APIs in two JAR files,
where documentation blocks are not
available.

JDiff also lets you write specific com-
ments for each change between two
APIs. You write a comment for each
change into a “comments.xml” file with
any text editor, and this file is read in
when the report is generated. The com-
ments file is regenerated after the report
is finished so the comments are not lost
after being incorporated into the
report’s HTML files. If no comments are
provided, by default JDiff does its best to
find appropriate comments for each
change from the Javadoc comment
blocks in the source code.

Scaling Issues
When scanning large APIs such as

J2SE 1.4, which has 129 different pack-

ages in it, Steps 1 and 2
can take a few minutes
to run on a 450MHz,
256MB Pentium III
machine. Once the
XML files have been
generated in Steps 1
and 2 though, they
don’t need to be

regenerated each time a JDiff report is
created. Step 3 can be repeated with dif-
ferent options each time, using the same
XML files from Steps 1 and 2. In Step 3 it
took about three minutes to generate a
JDiff report for the two J2SE APIs run-
ning on the same 450MHz, 256MB
Pentium III machine.

With large APIs, the XML files gener-
ated in Steps 1 or 2 can be quite large –
about 20MB in the case of J2SE 1.4, if all
the documentation is included for com-
parison. These files can be archived with
each release to avoid having to regener-
ate them later on. They can also be
made smaller if changes in documenta-
tion are not tracked, since much of the
content of each XML file is the entire
documentation from each API’s Javadoc
comment block. The –firstsentence
option can be used in Steps 1 and 2 to
minimize the size of the XML files by
storing only the first sentence of each
Javadoc comment block in the XML file.
The -docchanges option can be used in
Step 3 to avoid tracking changes in doc-
umentation, which reduces both the
size of the report and the report’s index
files.

How JDiff Works
JDiff uses the Javadoc doclet API (see

the Javadoc homepage), which gives
doclet developers a ready-made, easy-
to-use tree structure of all the Java pack-
ages and classes in the files scanned by
Javadoc. Doclets have been used to gen-
erate MIF and RTF documentation of
APIs, to create customized Javadoc tags
such as @todo, and even to generate
source code for other applications using
tags in the Javadoc comment blocks (see
articles referenced at www.doclet.com).

The JDiff doclet has two modes of
operation. In the first mode (Steps 1 and
2), it acts as an XML-generating doclet
that traverses all the known packages
and classes and writes as much infor-

mation about them as it can into an
XML file. The XML file now represents
everything the Javadoc knew about the
scanned API. JDiff can also generate an
XML Schema file (api.xsd) that describes
the XML file and permits XML parsers to
validate the XML file later on.

The second mode of operation (Step
3) takes two such XML files as input to
an XML parser, such as the Xerces XML
parser, and carefully compares them,
populating an instance of the JDiff
APIDiff.java class as it does so. The
results of the comparison are then used
by a number of JDiff classes to generate
the HTML output. A summary page of
all the packages that were removed,
added, or changed is created, with links
to pages for each package and class.
Index pages are also generated for all
the differences. Finally, statistics pages
and other optional HTML pages are
generated. All generated files except
the top-level summary are in a single
directory named “changes,” which
makes shipping the HTML files very
easy.

The Benefits of Using JDiff
• JDiff is based on the standard Javadoc

tool, and is just about as simple to
use.

• Developers and documentation teams
can produce release documentation
describing precisely what has changed
in each version of their product.
Knowing what has changed between
versions of a product leads to faster
acceptance of new versions, and fewer
frustrated customer calls when a
product changes.

• Developers who work in different
locations and time zones can use JDiff
to summarize the changes in APIs and
documentation blocks as the APIs
change during development.

• QA and testing organizations can use
JDiff to help identify which parts of an
API have changed most between ver-
sions, indicating which areas need the
most testing.

Resources
• JDiff: www.jdiff.org,
• Project hosted by SourceForge:

http://javadiff.sourceforge.net
• Javadoc Tool: http://java.sun.com

/j2se/javadoc/index.html
• Writing your own doclet: http://

java.sun.com/j2se/1.4/docs/tooldocs
/javadoc/overview.html

• Third-party doclets: http://java.sun
.com/j2se/javadoc/faq.html#doclets

• Doclets: www.doclet.com

FIGURE 4 Three steps for using JDiff

doar@pobox.com

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 3 Typical J2SE1.4 documentation changes

TABLE 1 Percentage changes between different APIs

OLD API NEW API PERCENTAGE CHANGE
J2SE 1.2 J2SE 1.3.0 11%
J2SE 1.3.0 J2SE 1.4 33%
J2SE 1.3.0 J2SE 1.3.1 <1%
EJB 1.1 EJB 2.0 37%
Servlet 2.2 Servlet 2.3 49%

AUTHOR BIO
Matthew Doar, a

software developer at
Vitria Technology, Inc.,
has worked with Java
since the early days
of JDK1.1. He wrote

JDiff with the intention
that it should be as

easy to use as
Javadoc, and to

improve the
overall level of

documentation
shipped with all Java

products. Matthew
holds a PhD in

computer
science from the

University of
Cambridge.

(www.pobox
.com/~doar)

43APRIL 2002

Java COM

Capella
University
www.capellauniversity.edu

Java COM

ust recently, there was a question

posted in the Java Ranch’s

(www.javaranch.com) Java

Performance discussion group asking

if there is any advantage to running

more than one server application in

the same VM. Group members were

quick to point out that each JVM

consumes a significant quantity of

system resources.

Application
LauncherLauncher

A Multiple
li i

 Multiple AMultiple Multiple Mult pleMult pleM lti lMultiple M lti lMultipleMultiple MultipleMultiple MultipleMultiple Multiple Multiple

Kirk Pepperdine

Reduces the

for system resoources

overall demmand

written by

44 APRIL 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

Java COM

45APRIL 2002

Java COM

By necessity, the operating system loads each VM into its
own separate process slot. Consequently, each VM is forced to
duplicate the other’s initialization efforts and resource alloca-
tions. Specifically, each VM is required to load the JDK core
classes into their respective heap spaces. Running several Java
applications in the same VM would eliminate this duplication
of effort. There’s an analogy in the world of operating systems.

System engineers have long recognized that portions of
statically linked executables contain read-only text that’s
potentially shareable. They knew that certain performance
benefits could be realized if processes could share this text.
This knowledge motivated them to develop shared-text
libraries. These libraries are loaded only once and are dynami-
cally linked to executables. Nowadays, most operating systems
support the concept of a shared text library (or DLL – dynam-
ic-link library). For example, dynamically linked UNIX
processes make references to the shared library libc.so. The OS
ensures that these processes share the text portion of that
library.

By introducing shared libraries, system engineers reduced
the overall requirements for system memory. One side effect:
the scheme also places less stress on the IO channels and other
system resources. This example hints at performance benefits
that might be available if you could run several Java applica-
tions in the same VM.

Returning to the original thread of discussion and the ques-
tion, “How do you launch multiple applications?”, I suggested
a way you might easily build this capability. Even though I was
confident that my post was correct, I had never actually built
an application launcher. A few seconds after I hit the send but-
ton I decided to stick around and read my own advice. I read
my posting and thought, “Is it really that easy? Maybe I’d better
check out my own advice.” What follows are the lessons I
learned as I “ate my own dog food.”

What I’m Looking For
I’d like to have the flexibility to run several Java 2 applica-

tions concurrently in the same JVM. These applications need
to function in a secure environment that isolates them from
each other to the greatest extent possible. The use of this mul-
tiple application launcher (MAL) should be transparent to the
application. Finally, all applications should be able to share
common read-only resources. Let’s start by investigating the
current launch technology to see what we can learn and possi-
bly reuse.

Launching a Java Application
MAL needs to mimic the behavior of the standard applica-

tion launcher. I began my voyage of discovery by reviewing the
way a Java application is loaded and then executed. I quickly
discovered that starting up a VM initiates a complex sequence
of events. Once the initialization sequence has completed, I’m
left with a VM that’s ready to load a Java class and invoke a
standard entry point method. (The complete source code for
this article can be downloaded from www.sys-
con.com/java/sourcec.cfm.)

By default the first optional parameter found on the com-
mand line specifies the Java class that implements the entry-
point method. The launcher uses the java.class.path property to
find and then load this class. Reflection is used to find the entry-
point method. Since it’s well documented, the method needs to
be declared as public static void main(String[] args). Once it’s
loaded and a reference to the method main has been resolved,
the launcher will invoke that method. The VM will continue to
function until System.exit() or Runtime.halt() is called. The
launcher is the most likely candidate to make that call.

Java COM

46 APRIL 2002

From this description, I
started to see the first set of
problems that needed to be
addressed. The default
launcher required the appli-
cation’s classes to be on the
system’s classpath. If I don’t
plan on shutting down the
VM, I’ll need to know about
every application that will
be run so I can configure the
classpath before the VM is
started. If I do introduce a
new application, I’ll be
required to shut down the
VM, reset the classpath, and
then restart the VM. But the
original post was about run-
ning applications in a server
environment. Forcing a VM
shutdown in this environ-
ment would negate the reason for using MAL.

There’s another related problem. The consequence of being
able to use only a single classpath is that MAL can’t run different
versions of the same application. There seems to be no practical
way to overcome this difficulty using a single classpath.

Both of these scenarios point to a new requirement. I
should be able to dynamically extend the VM’s classpath in a
secure manner. I need a way to isolate these “on-demand”
extensions of the classpath to the launching of the application
in question. Since this discussion is centered on classpath and
class loading, let’s turn our attention to the Java 2 ClassLoader
model.

Java 2 ClassLoaders (Part 1)
Java 2 introduced a new class-loading architecture, com-

monly known as the delegation model. At its basis is the
notion that ClassLoaders can be chained. In this chain, every
ClassLoader has a parent and a ClassLoader’s parent will be
given the first chance to load a class. The only exception to this
rule is the bootstrap ClassLoader. It’s implemented in the VM
and has no parent. One other important rule: a child can del-
egate to its parent but a parent can’t delegate to any of its chil-
dren. Consequently, a ClassLoader can look for a class in its
parent but not in any of its children.

In adapting the JVM to the delegation model, three new
ClassLoaders were introduced (see Figure 1). The first
ClassLoader to be created is the bootstrap one. As previously
stated, it’s implemented in the VM and has no parent. Its role
is to load core JDK classes found in the JAR files in the lib sub-
directory of the JDK distribution tree (or set with the
-Xbootclasspath parameter). The extension ClassLoader,
which is written entirely in Java, loads from the directories
specified by the system property java.ext.dirs. The default
value for this property is the lib/ext subdirectory found in the
JDK distribution. Its role is to load classes that extend the
capability of the core JDK distribution. As shown in Figure 1,
the bootstrap ClassLoader is the parent of the extension
ClassLoader. Finally, there’s the application ClassLoader
whose parent is the extension ClassLoader. Its role is to read
classes from the system classpath (the property name is
java.class.path).

The delegation model causes core JDK classes to be loaded
in isolation from the extension classes, which are in turn
loaded in isolation from application classes. This is a great
discovery, as it would appear that I could use ClassLoaders to
isolate an application’s classes. In addition, constructing a

ClassLoader on demand will allow me to extend the classpath
on demand. Now the question is: Do I buy or do I build a
ClassLoader? I much prefer to buy, so let’s see what the JDK
has to offer in the way of ClassLoaders.

Java 2 ClassLoaders (Part 2)
At the top of the ClassLoader hierarchy sits the abstract

class java.lang.ClassLoader. It contains all the behavior need-
ed to convert an array of bytes into an instance of a class. It has
one known subclass, java.security.SecureClassLoader. The
SecureClassLoader adds support for the interactions with
CodeSource, ProtectedDomain, and SecurityManager. A few
of the services they provide include ensuring that class files
are loaded by trusted sources only and that the bytecode has
not been tampered with. SecureClassLoader has one known
subclass, URLClassLoader. Figure 2 provides the Javadoc for
this class.

This is great; the JDK comes with a ClassLoader that suits
my needs. I can use the URLClassLoader to dynamically
extend the system’s classpath and, in the same stroke, isolate
each application from any others that may be running. To
unload an application I can simply unload the ClassLoader. In
doing so, I cause no harm to other applications that may be
running. Now that I have found a suitable ClassLoader, I can
take the first step toward creating an abstraction of a Java
application.

The Application Class
Let’s start this exercise by writing down a description of a

Java application. The classical Java application is a collection
of one or more Java classes that cooperate to carry out some
important function. As was previously alluded to, the process
of launching a Java application can be broken down into four
steps:
1. Finding, then loading, the class that implements the stan-

dard entry point, main
2. Finding, then invoking, the main method in the previously

mentioned class
3. Waiting for the application to complete
4. Catching and reporting on any exceptions that the applica-

tion lets slip through

This list specifies the behaviors that need to be imple-
mented. Let’s implement them and the supporting state one
step at a time into a class called Application.

The first step states that the target class needs to be locat-
ed and loaded. The code snippet demonstrates the technique
commonly used to dynamically load a class.

Class targetClass = Class.forName(entryPointClassName);

A quick look at the Javadocs reveals that the method
forName() loads the target class using the application

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

FIGURE 1 ClassLoaders

FIGURE 2 JDK URLClassLoader documentation

public class URLClassLoader
extends SecureClassLoader
This class loader is used to load classes and resources from a search
path of URLs referring to both JAR files and directories. Any URL
that ends with a “/” is assumed to refer to a directory. Otherwise, the
URL is assumed to refer to a JAR file, which will be opened as needed.
The AccessControlContext of the thread that created the instance of
URLClassLoader will be used when subsequently loading classes and
resources.
The classes that are loaded are, by default, granted permission to access
only the URLs specified when the URLClassLoader was created.
Since JDK 1.2

M
ul

tip
le

 A
pp

lic
at

io
n

L
au

nc
he

r
M

ul
tip

le

M
ul

tip
le

M

ul
tp

le

M
ul

tip
le

M
lti

l
M

ul
tip

le

M
lti

l
M

ul
tip

le
M

ul
tip

le

M
ul

tip
le

M
ul

tip
le

M

ul
tip

le
M

ul
tip

le

M
ul

tip
le

M

ul
tip

le

MA
 M

A
MM

ul
tip

le

MM M MM
ul

tip
le

M

47APRIL 2002

Java COM

Rational
Software

www.rational.com/offer/javacd2

Java COM

48 APRIL 2002

ClassLoader. But I already know that none of our application
classes will be on the application classpath. This call will
throw a ClassNotFoundException. Okay, I’ve written only one
line of code and already there’s a problem, great! Let’s press
onward. Digging a little further into the Javadoc reveals that
forName has been overloaded in the JDK 1.2. The new signa-
ture is forName(String className, boolean runStatic-
Initializer, ClassLoader classloader). This method finds the
class named by className using ClassLoader. After the class is
loaded, the Boolean determines if the static initializer should
be executed. Since each application will have its own
ClassLoader, using the new method signature allows us to
specify it instead of using the system ClassLoader. Add a field
ClassLoader and the supporting accessors to the application.
The new code fragment solves the classloading problem.

Class targetClass = Class.forName(entryPointClassName,

true, this.getClassLoader());

I’ll see how to set up the ClassLoader later on. For now, I
can progress to step two, the discovery and invocation of the
main method.

Following the loading of the main class, reflection is used to
find the main method. The code for resolveMain() can be

found in Listing 1. The JDK tools documentation speci-
fies that the main method should be declared static

and public. A check of the method modifier flags
confirms that the correct method has been found.

The next step is to invoke the main method.
Now, if I invoke main right away, my thread would
be tied up running the application and I wouldn’t

be able to launch another application. I can avoid
all this by executing each application in its own thread.

Semantically, an application is a runnable entity, so it makes
sense to have the application implement the Runnable inter-
face. The Runnable interface requires that I implement a run
method. If the main method is invoked in the run method, the
main thread will be free to launch other applications.

Next question: What happens if the application throws an
exception? The run method doesn’t include any support for
this, but it’s actually a good thing because any application that
throws an exception would force the launcher to handle it
immediately. A more flexible approach is to have the applica-
tion catch and store any exception that has been thrown. The
launcher can then deal with the exception on its own terms.
You can find the run method in Listing 1.

The run method includes behavior to help the application
keep track of the running state. There are several ways I can do
this. I can ask the thread if it’s still alive. I don’t care if the
thread is running, I care if the application is running. Though
one implies the other, it still seems more sensible to ask the
application if it’s running. The monitor would have to ask the
application for the thread and I don’t feel comfortable export-
ing internal state unless I have to. In this case, there seems to
be no need to export the thread from the application. Thus,
I’ve added a Boolean running to the application. Though
access to and the setting of Booleans is guaranteed to be
atomic, I still use synchronized to normalize all access to run-
ning. This becomes more important later on when setRunning
starts to play an important role in thread control. When the

run method ends, I always want running to be set to false.
Delegating that method call to a finally block ensures that this
always happens.

Let’s give the responsibility for launch to the application.
Since all the launch data is contained in the application, it
only makes sense to put the launch method there. Again, the
launch method is shown in Listing 1.

The launch method accepts a string array as arguments to
be passed to the main method. The problem is, the run
method doesn’t accept any arguments. Adding an args field to
the application solves this problem. The method goes on to
define a thread for the application. After setting the context
ClassLoader (to be explained later), it calls start() and the
application is finally running. Now I’m left with implementing
the last two steps.

First, I need the main thread to wait for the application to
complete before letting it exit. Second, I need to report on any
exceptions that may have been thrown and not caught by the
application. These steps will be delegated to the class that creat-
ed the application and then called the launch method. The pri-
vate method setRunning (see Listing 1) sets the value for the field.
If the value is set to false, it makes a call to notifyAll(). This releas-
es any thread that may be blocked in the waitFor() method.

The Context ClassLoader
In the launch method, I took the mysterious step of setting

the thread’s context ClassLoader. Now I’ll discuss how this fits
into the delegation model and subsequently MAL. Recall from

our discussion of ClassLoader chaining that a parent couldn’t
see classes in a child ClassLoader. It turns out that this restric-
tion would be a showstopper if it were not for the context
ClassLoader.

Why did I load each application in its own ClassLoader?
This isolates the application and although this isolation is
desired, it can also be a hindrance. Consider the case in which
a class in a parent ClassLoader references a class’s child. For
example, I may use a component such as an O/R mapping
tool loaded on the system classpath to persist an application
class. By design, the applications classes are not visible to the
O/R mapping tool. Consequently, attempting to reference one
will cause a ClassNotFoundException to be thrown. I also
must be careful if I add the tool to the application’s classpath,
as the ClassLoader plays a role in object identity. The same
classes loaded from the same source into two different
ClassLoaders will be considered different classes. Performing
an operation in the wrong ClassLoader may cause a (terribly
confusing) ClassNotFoundException to be thrown (or worse).

Each of these scenarios suggests that I need something
more: a ClassLoader that functions within the application’s
context. It’s not often that I get to use the two terms added
flexibility and added security in a positive way in the same sen-
tence but that’s exactly what the Java 2 class loading model
offers. By adding the field contextClassLoader and appropri-
ate accessors to the class thread, the designers help support
the isolation (and hence security) I require without breaking
dynamic class loading schemes.

By default every new thread takes on the contextClassLoader
of the thread it was created in. In my case, the context-
ClassLoader of the thread that creates an application thread is
the application ClassLoader. But the only ClassLoader that

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

M
ul

tip
le

 A
pp

lic
at

io
n

L
au

nc
he

r
M

ul
tip

le

M
ul

tip
le

M

ul
tp

le

M
ul

tip
le

M
lti

l
M

ul
tip

le

M
lti

l
M

ul
tip

le
M

ul
tip

le

M
ul

tip
le

M
ul

tip
le

M

ul
tip

le
M

ul
tip

le

M
ul

tip
le

M

ul
tip

le

MA
 M

A
MM

ul
tip

le

MM M MM
ul

tip
le

M

t’s not often that I get to use the two terms added flexibility and
added security in a positive way in the same sentence but that’s

exactly what the Java 2 class loading model offers”I“

49APRIL 2002

Java COM

Dice.com
www.dice.com

M
ul

tip
le

 A
pp

lic
at

io
n

L
au

nc
he

r
M

ul
tip

le

M
ul

tip
le

M

ul
tp

le

M
ul

tip
le

M
lti

l
M

ul
tip

le

M
lti

l
M

ul
tip

le
M

ul
tip

le

M
ul

tip
le

M
ul

tip
le

M

ul
tip

le
M

ul
tip

le

M
ul

tip
le

M

ul
tip

le

MA
 M

A
MM

ul
tip

le

MM M MM
ul

tip
le

M

Java COM

50 APRIL 2002

knows how to load an application’s classes is the application’s
ClassLoader. If any component needs to load an Application
class, it will need access to the application ClassLoader.
Considering that the most likely thread to trigger the loading of
an Application class will be the one that was created by the appli-
cation, this works out perfectly. If you inspect the method
jdkJava2Style in TestComponent (see Listing 2), you’ll notice that
it passes the context ClassLoader from the current thread into
the forName method. This allows forName to load the class
using the application ClassLoader. In effect, you’ve given the
parent a controlled peek into one of its children.

Completing the Isolation of the Application’s Execution
Environment

The constructor for a new URLClassLoader takes an array
of java.net.URL as an argument. The classpath for the
ClassLoader is derived from this URL array. Note that once
instantiated, the classpath for a URLClassLoader can’t be
changed. Since the class URL is instrumental in this applica-
tion, it warrants closer scrutiny.

The constructor for the URL class accepts a string repre-
sentation of the URL. The salient point here is that
URLClassLoader assumes that the URL points to a directory or
a JAR file. All paths ending with a “/” are assumed to be a direc-
tories. All others are assumed to be JAR files.

The constructor for an application uses a URL array to
define the classpath for its ClassLoader. By placing the respon-
sibility to construct an array of well-formed URLs on the
caller, I haven’t imposed any restrictions on how the informa-
tion is to be collected.

Finally, any application that calls System.exit() or
Runtime.halt() will cause the VM to exit. Clearly, I need some way
to prevent this from happening. Fortunately, before the main body
of these methods is executed, it checks with the SecurityManager
to ensure that the caller has permission to make that call. Next I’ll
investigate how how to employ the SecurityManager to prevent
applications from shutting down the VM.

The Java 2 Security Model
The Java 2 security model is a large, complex topic that falls

well outside the scope of this article. I’ll introduce only a few
relevant portions of the subject.

As of the JDK 1.2, code must be granted permission to
access a system resource. To ensure permission has been
granted, JDK classes call the check methods found in the class
java.lang.SecurityManager. Looking deeper into the docu-
mentation I found the runtime permission, exitVM, that con-
trols VM shutdown. Wow, can I solve this problem by configur-
ing this runtime permission? Well, if I make this change, nei-
ther the application nor MAL would be able to call
System.exit(). I need to do something else. Again on the
buy/build trail, I looked through the JDK to see what I might
learn or reuse. This time, my search failed to turn up a suitable
candidate, so that leaves the build option.

Constructing a SecurityManager
In the documentation for SecurityManager is a description

for a checkExit method. It checks to see if the code has been
granted the exitVM permission. If I override this method, I can
check to see whether or not its MAL or an application made
the exit call. The implementation of my specialization of
SecurityManager can be seen in Listing 3.

MAL makes a call to System.setSecurityManager in a static
initializer to install the specialized SecurityManager. There
still are some interesting side effects that travel with this solu-
tion. For instance, once installed, a SecurityManager can’t be
replaced. That’s good because I don’t want an application to
install its own SecurityManager. However, it’s also bad because
if any application does try to install a SecurityManager, it will
fail. Could this be one type of application that MAL may not be
able to deal with?

Running a Test Application
I crafted a small test application that consists of a compo-

nent and an application. The component defines the interface
TestComponentInterface and class TestComponent. The
application contains a single class named TestApplication1,
which implements TestComponentInterface. TestComponent
uses reflection to create a new instance of TestApplication1
and then calls the method defined in TestComponent-
Interface.

TestComponent defines two methods, jdk11Style() and
jdkJava2Style(). As expected, the former uses the single argu-
ment Class.forName() and the latter uses the three-argument
Class.forName() method. Each of these methods accepts two
parameters: one specifies the class implementing Test-
ComponentInterface, and the other is used as an argument
for TestComponentInterface.run(). A test application satisfy-
ing these requirements was crafted. The test calls both
jdk11Style() and jdkJava2Style(). Running the tests requires
that TestComponent be included in TestApplication’s class-
path. Both jdk11Style() and jdkJava2Style() run as expected. I
haven’t yet justified the need for the more complex three-
argument Class.forName() method. This will be justified
later on.

The first time I ran a test, I encountered a SecurityException
(see Listing 4). Okay, I’m only overriding checkExit so what’s the
problem? I replaced MultiApplicationSecurityManager with
SecurityManager and reran the tests. Same result. Okay, this
helps because I now know that my security manager is not the
source of the problem.

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

TABLE 1 Test case memory requirements

Single VM (KB) Second VM (KB) Third VM (KB) Total Memory Requirements (KB)

Single VM running one application 377.28 na na 377.28
Two VMs, each running one application 375.6 230.5 na 606.1
Three VMs, each running one application 386.1 238.3 227.5 851.9
Single VM running three applications 384.1 na na 384.1

FIGURE 3 System ClassLoader hierarchy

51APRIL 2002

Java COM

ParaSoft
Corporation

www.parasoft.com/jdj4

Java COM

52 APRIL 2002

As it turns out, by default, a SecurityManager is not
installed. When this happens, all check methods pass. If a
SecurityManager is installed, its default behavior is to grant
the permission specified in the files java.home/lib/security/
java.policy and user.home/.java.policy. Well, there was no
.java.policy file in my user.home directory and the former file
grants only a limited number of permissions. To fix the prob-
lem, I used the policytool to create a .java.policy file (see
Listing 5). Now my tests run as expected.

To see how much memory can be saved, let’s first see how
much memory is normally consumed using the traditional
launcher. Four tests were defined. The first three tests execute
one, two, and three instances of the test application, each in
its own VM. The last test executes three applications in the
same VM using the MAL. Each test was run three times in the
JDK 1.3.0 on my 128MB W2K laptop. I configured the system
tool perfmon to monitor the free memory counter.

Since I know that the OS shares resources, the tests needed
to account for the effects of sharing. The first test established
a baseline memory usage. Tests 2 and 3 provided the incre-

mental amount of memory required to support the running
of a second and third instance of the VM. Table 1 illus-

trates the memory requirement of each test.
Figure 3 provides a graph of the free memo-

ry counter over time. The graph displays the
results of two different runs. I first ran three

applications, each in its own VM. After free memory
had returned to prerun levels, I then ran three applica-

tions all in the same VM. Each downward step is the
result of a new VM grabbing a chunk of memory. It’s
interesting to note that in the first run, memory is con-
sumed in three steps (one for each VM start) and recov-
ered in four. In addition, the memory requirements of
the first VM are greater than that of the two successive

VMs. As each VM halts, memory is returned to the OS.
After all the VMs have exited, the OS is now free to recover the
shared text segment. Once this is completed, free memory
returns to prerun levels.

In the latter run, we can see the expected decrease in
demand for memory. Once again, witness the OS recovering
the shared text segment as a separate step.

Though the technique does save memory, the results are
not as big as I’d hoped. But there’s another component to con-
sider, time. By having a VM prestarted, it should be much
quicker to launch applications. I’ll leave the verification of that
assertion as an exercise for the reader. I’ll spend the remainder
of this article spinning MAL through a second iteration.

Sharing Components
Recall that during the discussion of the contextClass-

Loader, the use of third-party components such as O/R map-
ping tools was brought up. It’s common for these tools to use
a pluggable integration strategy. In the current implementa-
tion of the launcher, I must choose between placing third-
party components on the system classpath or on the applica-
tion classpath. If I choose the system classpath, then applica-
tions can share it, but I won’t be able to use multiple versions
of the component nor will I be able to dynamically define it. If
I wish to dynamically define the component, I need to place it
on the application classpath. In making this choice, I’ve elim-

inated the possibility of sharing the component. Can I have
my cake and eat it too? Can I dynamically define a sharable
component? Stay tuned.

First let’s consider some of the common elements and
differences between a component and an application. An
application is runnable; a component is not. An application
must support the standard entry point. A component defines
its own entry points, which may or may not be set according
to a standard. An application is launched; a component is
loaded. Applications and components can be loaded into
their own ClassLoader and each requires its own classpath
entry.

I’ll use this initial set of observations to see if I can motivate
a refactoring of MAL to include a Component class. Since the
application looks like a specialization of the component, I’ll
start by having the application extend the component. As
before, the application still implements Runnable and it
maintains the behavior to monitor and control threading. All
of the classpath and class-loading behavior can be pushed up
into the component superclass. Once I finish the refactoring, I
can focus on what new behavior needs to be added.

What’s new in this version of the launcher is that applica-
tions and components can be dependent on other compo-
nents. To gain a deeper understanding of what this means,
consider the following example: I have an application, A, that
uses a third-party O/R mapping tool, C. If I load both A and C

in different ClassLoaders, I need to somehow ensure that A
and C can see each other’s classes. Chaining the ClassLoader
containing A to the one containing C can solve the first half of
the problem. If you look to the constructor in the component
and the application, you can see an extra parameter has been
added. The body of the constructor in the component con-
tains the extra logic needed to create a ClassLoader with a par-
ent other than the system ClassLoader.

To make A visible to C, I need to consider how C interacts
with A. The interactions between TestComponent and
TestApplication represent a typical interaction. In the jdkStyle
methods, TestComponent tries to dynamically load
TestApplication. In the jdk11Style method, first the compo-
nent’s, then the system’s, ClassLoader is used. But I know that
these ClassLoaders aren’t visible to TestComponent so the
method will throw a ClassNotFoundException (see Listing 6).
In the jdkJava2Style method, the first ClassLoader contacted is
the thread’s context ClassLoader. In this case, the thread was
started in Application.launch(). If we look back at that
method, we can see that the thread’s context ClassLoader is set
to that of the applications’. Since the jdkJava2Style method
uses the threads context ClassLoader, our problem is solved –
C is visible to A. The jdkJava2Style method runs without inci-
dent.

The ComponentCache
The ComponentCache is a singleton that defines a reposi-

tory for components. It’s necessary to “pin” components into
memory for the period of time when they’re not referenced by
anything else. The ComponentCache also acts as a “database”
of components. This means that once loaded, the component
will remain in memory for the lifetime of the VM. This brings
up a number of interesting GC-related questions, which I
won’t talk about here.

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

M
ul

tip
le

 A
pp

lic
at

io
n

L
au

nc
he

r
M

ul
tip

le

M
ul

tip
le

M

ul
tp

le

M
ul

tip
le

M
lti

l
M

ul
tip

le

M
lti

l
M

ul
tip

le
M

ul
tip

le

M
ul

tip
le

M
ul

tip
le

M

ul
tip

le
M

ul
tip

le

M
ul

tip
le

M

ul
tip

le

MA
 M

A
MM

ul
tip

le

MM M MM
ul

tip
le

M

could rewrite the System class to remove some of this contention,
but the Java licensing agreement (for good reasons)

would prevent me from distributing these modifications”

“I

53APRIL 2002

Java COM

InstallShield
Software Corp.

www.installshield.com

Java COM

54 APRIL 2002

Further Refinements
A number of further refinements could be made to

improve the launcher. The first would be to use a
ThreadGroup to contain each application’s threads into a sin-
gle bundle. Second, the struggle with the SecurityManager
clearly demonstrated that static and singleton implementa-
tions can wreak havoc with multithreaded applications. The
System class contains a number of statics and singletons that
reinforce assertion. Although I use singletons (as evidenced by
ComponentCache), I tend to view them with a degree of skep-
ticism. Is there something missing from the design? This is the
first question that pops into my mind when I see one.

The System class allows access to a number of potentially
nonshareable resources. Is there a design element that’s miss-
ing? It’s clear that MAL places different strains on the JDK than
those originating from the traditional launcher. In a sense,
MAL is trying to be an execution context. In this role, MAL falls
short in several key areas.

The first shortcoming can be seen with the SecurityManager
implementation. Though the Java 2 security model is much
improved, it still doesn’t totally eliminate the need for a cus-
tomized SecurityManager. Applications that attempt to install
their own SecurityManager won’t be able to do so. I could have
implemented a more complex custom SecurityManager, but
this wouldn’t have been necessary if I had an execution context
in which I could install a regular SecurityManager. The next
shortcoming is with System.properties.

It’s quite common for applications and components to set
properties in the System class. You could argue that if devel-
opers take care when naming properties, name-space colli-
sions could be avoided. What happens when you wish to run
two different versions of the same application? Different ver-
sions of the same application will most likely use the same
property names. Again, I could provide an implementation
that segregates properties by application, but a better solution
would be to have these properties isolated into separate exe-
cution contexts.

Next, I’ll talk about System.in, System.out, and System.err.
I find exceptions difficult enough to deal with without having
the added challenge of collating the output from several dif-
ferent applications. It would be much better if each applica-
tion had its own console. Yet another problem: What if an
application tries to install its own in, out, or err class? This
problem is not so easily solved, as it implies MAL may have to
make changes to a system.

I could rewrite the System class to remove some of this
contention, but the Java licensing agreement (for good rea-
sons) would prevent me from distributing these modifica-
tions. Most vendors that do require changes to base classes
(some profilers modify Object) use a bytecode injection to dis-
tribute the change without violating the license agreement.
This is a fairly complex technique that requires the use of a
specialized ClassLoader. These are only a few of the traps of
using statics and singletons in a multithreaded environment.

Summary
I’ve shown how you can construct a launcher to execute mul-

tiple applications. As demonstrated, this technique did reduce
the overall demand for system resources. In introducing this
technique, I’ve also introduced a practical application of the Java
2 ClassLoader model. This model is gaining wider acceptance as
demonstrated by J2EE container implementers and, most
recently, by IBM’s new IDE project, Eclipse. Eclipse will load each
plug-in into a separate ClassLoader. I’ve also learned to be more
careful when posting advice to a discussion group.

Java COM

package com.jpt.mal.application;

import java.lang.reflect.*;
import java.net.*;

public class Application implements Runnable {

protected URLClassLoader classLoader;
protected URL[] classPath;
protected String className;
protected Object[] args;
protected Exception applicationException;
protected boolean running;

public Application(String aClass, URL[] aClassPath) {
className = aClass;
classPath = classPath;
running = false;
classLoader = new URLClassLoader(

classPath,
Thread.currentThread()

.getContextClassLoader());
args = new Object[1];

}

public Exception getApplicationException() {
return applicationException;

}

public void launch(String[] args) {
if (isRunning()) return;
this.args[0] = args;
applicationException = null;
Thread thread = new Thread(this,

"Running " +
className);

thread.setContextClassLoader(this.classLoader);
thread.start();
Thread.yield();

}

// Runnable targets
public void run() {

setRunning(true);
try {

this.resolveMain().invoke(null, args);
} catch (Exception ex) {

applicationException = ex;
} finally {

setRunning(false);
}

}

private Method resolveMain()
throws ClassNotFoundException,
NoSuchMethodException {
Class targetClass =
this.classLoader.loadClass(className);

Class[] arg_types = { String[].class };
Method main = targetClass.getMethod("main", a
rg_types);

int mask = Modifier.STATIC ^ Modifier.PUBLIC;
if ((main.getModifiers() & mask) != mask)

throw new NoSuchMethodException(
"Cannot find method public static void

main(String[]) in class "+ className);
return main;

}

private synchronized void setRunning(boolean value) {
this.running = value;
notifyAll();

}

public synchronized boolean isRunning() { return run
ning; }

Listing 1

kirk@javaperformancetuning.com

M
ul

tip
le

 A
pp

lic
at

io
n

L
au

nc
he

r
M

ul
tip

le

M
ul

tip
le

M

ul
tp

le

M
ul

tip
le

M
lti

l
M

ul
tip

le

M
lti

l
M

ul
tip

le
M

ul
tip

le

M
ul

tip
le

M
ul

tip
le

M

ul
tip

le
M

ul
tip

le

M
ul

tip
le

M

ul
tip

le

MA
 M

A
MM

ul
tip

le

MM M MM
ul

tip
le

M

AUTHOR BIO
Kirk Pepperdine

has more than 10
years of experi-

ence in OO tech-
nologies. In addi-

tion to his work in
the area of per-
formance tuning,
Kirk has focused
on building mid-

dleware for
distributed appli-

cations.

J2
SE

H
om

e
J2

E
E

J2
M

E

55APRIL 2002

Java COM

ILOG
www.ilog.com/jdj/jrules

Java COM

56 APRIL 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

public synchronized void waitFor() {
while (isRunning())

try {
wait();

} catch (InterruptedException ie) {}
}

}

package com.jpt.testcomp;

public class TestComponent {

public TestComponent() {}

public void runJava2Style(String implementation, String arg)
throws ClassNotFoundException,
InstantiationException,
IllegalAccessException {

Class clazz = Class.forName(implementation, true,
Thread.currentThread().getContextClassLoader());

TestComponentInterface tci = (TestComponentInterface)
clazz.newInstance();

tci.run(arg);
}

public void runJDK11Style(String implementation, String arg)
throws ClassNotFoundException,

InstantiationException,
IllegalAccessException {

Class clazz = Class.forName(implementation);
TestComponentInterface tci = (TestComponentInterface)

clazz.newInstance();
tci.run(arg);

}
}

public class MultiApplicationSecurityManager extends
SecurityManager

throws SecurityException {

public void checkExit(int status) {

if (Thread.currentThread().getContextClassLoader() !=
ClassLoader.getSystemClassLoader())

throw new SecurityException();

super.checkExit(status);

}

java.security.AccessControlException: access denied (java.lang.Runtime
Permission createClassLoader)

at java.security.AccessControlContext.checkPermission(AccessControlContext.
java:272)

at java.security.AccessController.checkPermission(AccessController.
java:399)

at java.lang.SecurityManager.checkPermission(SecurityManager.java:545)
at java.lang.SecurityManager.checkCreateClassLoader(SecurityManager.

java:610)
at java.lang.ClassLoader.<init>(ClassLoader.java:203)
at java.security.SecureClassLoader.<init>(SecureClassLoader.java:56)
at java.net.URLClassLoader.<init>(URLClassLoader.java:82)
at com.jpt.application.Application.<init>(./src/com/jpt/application

/Application.java:20)
at com.jpt.ui.JShell.launch(./src/com/jpt/ui/JShell.java:60)
at com.jpt.ui.JShell.main(./src/com/jpt/ui/JShell.java:72)
Exception in thread "main" Process terminated with exit code 1

/* AUTOMATICALLY GENERATED ON Sun Feb 03 15:43:44 EST 2002*/
/* DO NOT EDIT */

grant {

permission java.security.AllPermission;
};

Running JDK 1.1 Style on com.jpt.testapp.TestApplication1
Expected
Exception:com.jpt.testapp.TestApplication1java.lang.ClassNotFoundEx
ception: com.jpt.testapp.TestApplication1
at java.net.URLClassLoader$1.run(URLClassLoader.java:200)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:188)
at java.lang.ClassLoader.loadClass(ClassLoader.java:297)
at java.lang.ClassLoader.loadClass(ClassLoader.java:253)Running
JDK 1.1 Style on com.jpt.testapp.TestApplication2
at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:313)
at java.lang.Class.forName0(Native Method)
at java.lang.
Expected Exception:com.jpt.testapp.TestApplication2
Class.forName(Class.java:120)
at com.jpt.testcomp.TestComponent.runJDK11Style(Unknown Source)
at com.jpt.testapp.TestApplication1.start(Unknown Source)Running
Java2 Style oncom.jpt.testapp.TestApplication1
at com.jpt.testapp.TestApplication1.main(Unknown Source)
at java.lang.reflect.Method.invoke(Native Method)
at com.jpt.mal
com.jpt.testapp.TestApplication1:0 sleeping
.component.Application.run(Unknown Source)
at java.lang.Thread.run(Thread.java:484)
java.lang.ClassNotFoundException:
com.jpt.testapp.TestApplication2Running JDK 1.1 Style on
com.jpt.testapp.TestApplication3
at java.net.URLClassLoader$1.run(URLClassLoader.java:200)
at java.security.AccessController.doPrivileged(Native Method)
a
Expected Exception:com.jpt.testapp.TestApplication3
t java.net.URLClassLoader.findClass(URLClassLoader.java:188)
at java.lang.ClassLoader.loadClass(ClassLoader.java:297)
at java.lang.ClassLoader.loadClass(ClassLoader.java:253)
at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:313)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:120)
at com.jpt.testcomp.TestComponent.runJDK11Style(Unknown Source)
at com.jpt.testapp.TestApplicaRunning Java2 Style
oncom.jpt.testapp.TestApplication2
com.jpt.testapp.TestApplication2:0 sleeping
tion2.start(Unknown Source)
at com.jpt.testapp.TestApplication2.main(Unknown Source)
at java.lang.reflect.Method.invoke(Native Method)
at com.jpt.mal.component.Application.run(Unknown Source)
at java.lang.Thread.run(Thread.java:484)
java.lang.ClassNotFoundException: com.jpt.testapp.TestApplication3
at java.net.URLClassLoader$1.run(URLClassLoader.java:200)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:188)
at java.lang.ClassLoader.loadClass(ClassLoader.java:297)
at java.lang.ClassLoader.loadClass(ClassLoader.java:253)
at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:313)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:120)
at com.jpt.testcomp.TestComponent.runJDK11Style(Unknown Source)
at com.jpt.testapp.TestApplicaRunning Java2 Style
oncom.jpt.testapp.TestApplication3
com.jpt.testapp.TestApplication3:0 sleeping
tion3.start(Unknown Source)
at com.jpt.testapp.TestApplication3.main(Unknown Source)
at java.lang.reflect.Method.invoke(Native Method)
at com.jpt.mal.component.Application.run(Unknown Source)
at java.lang.Thread.run(Thread.java:484)
com.jpt.testapp.TestApplication1:1 sleeping
com.jpt.testapp.TestApplication2:1 sleeping
com.jpt.testapp.TestApplication3:1 sleeping
com.jpt.testapp.TestApplication1:2 sleeping
com.jpt.testapp.TestApplication2:2 sleeping
com.jpt.testapp.TestApplication3:2 sleeping
com.jpt.testapp.TestApplication1 done!
com.jpt.testapp.TestApplication2 done!
com.jpt.testapp.TestApplication3 done!

Listing 6

Listing 5

Listing 4

Listing 3

Listing 2

57APRIL 2002

Java COM

Actuate
Corporation

www.actuate.com/info/jbjad.asp

Java COM

58 APRIL 2002

I’m constructing a tree from a file
and I need a way to halt the tree
construction until after the file is
finished reading from a separate
thread.

A couple of approaches come to mind.
Your problem centers on the behavior
of threads, so let’s look at a couple of
possibilities. First, you could consider
having the TreeBuilder thread check a

global variable such as isFileLoadComplete and
yield if file loading has not been completed. You
could have the FileLoad thread get a reference
to the TreeBuilder thread and make it sleep until
the file has been loaded. You could also use
thread synchronization using notify and waitFor.
I recommend none of those approaches, and
instead suggest a different design.

If you want to build a tree, it’s easier to do it
in the same thread. Consider the following
approach: upon opening a file, create an
instance of the tree. When reading each line of
the file, update the tree in place. Once you’re
done reading the file, copy the tree to its appro-
priate location. This approach will keep your
code clean and allow your program to run faster.
If the tree you’re adding to is also updated by
simultaneous file reads, make sure that you
wrap it in a synchronized block.

I hope this solves your problem.

In your January column, (JDJ, Vol.
7, issue 1), your answer to the
question about authentication to a
Windows 2000 server gave me
some good insight. Our company

has chosen not to go to Active Directory yet.
Can you describe a similar approach to the
problem using Windows NT 4.0 server?

Active Directory is one of the better
implementations of LDAP on the mar-
ket and is one of the few that isn’t
licensed on a per-entry basis. I hope

your organization will migrate in a timely man-
ner. To authenticate to a Windows NT domain,
you can’t use the JNDI approach mentioned but
will need to consider implementing the Java
Authentication and Authorization Service (JAAS).
JAAS provides a Windows NT provider that will
meet your needs. For more information on JAAS
visit http://java.sun.com/products/jaas/index-
10.html.

I’ve been doing a little reading on
JAAS and I like the fact that there’s
a standard API for authentication
and authorization. Can you describe

how to use JAAS’s authentication mecha-
nism without relying on its authorization
machinery? For example, I’d like to use JAAS
as the standard way to find out who the cur-
rent client is and then use that knowledge to
make some minor behavioral adjustments to
the code. For example, if you’re logged in as
Bob, then I might tweak a SQL statement a
bit so you don’t see as much as user Ted.
Can JAAS do this for me?

Let me make a couple of assumptions:
first, if you have your own authentica-
tion mechanism, such as a login page,
you most likely will have stored who
the user is in a bean. If you want to

know who the logged-on user is in a Swing
application, you can determine this from the
Java system properties that have a user.name
attribute.

JAAS wouldn’t help you with tweaking SQL
statements, as this is better handled by either
database-level security such as creating a new
JDBC connection for each user or by delegating
the change of SQL to a stored procedure. JAAS
would be appropriate for authentication and
authorization if you were integrating with a
third-party security provider, such as the Active
Directory and Windows NT Domain, or using a
single sign-on solution such as Netegrity’s
SiteMinder, RADIUS Servers, or Kerberos.

Each of these products will require that the
user be authenticated before any authorization
step takes place. You can hide the authentica-
tion step within your application, but you can’t
skip it.

I have a servlet that talks to a
secure gateway to authorize cred-
it cards. It uses JDK 1.3.1 and
JSSE. When I upgraded to JDK
1.4, it stopped working. The fol-

lowing line of code throws a
ClassCastException:

HttpsURLConnection connection =
(HttpsURLConnection).url.openConnection();

Could you tell me why my code doesn’t
work?

This problem can be easily corrected
by changing some import statements.
In JDK 1.4 HttpsURLConnection has
changed to javax.net.ssl and no longer
uses com.sun.net.ssl. If you still need

to use an older class, you can reference it at
startup by using:

java–Djava.protocol.handler.pkgs=
com.sun.net.internal.www.protocol

Alternatively, you can set it at runtime as
follows:

System.setProperty("java.protocol.handler.pkgs"
,"com.sun.net.ssl.internal.www.protocol");

What’s the best way to internation-
alize exceptions?

I’m not sure of the best way, but I can
show you how I would approach the
problem. I would suggest creating your
own exceptions and throwing them
using internationalized strings. The fol-

J2
SE

H
om

e
J2

E
E

J2
M

E

Q

Q

A

A

WRITTEN BY
JAMES MCGOVERN

Unlike the doctor who works for your HMO, I won’t
require a copayment for each visit nor ask you to fill out long ardu-
ous forms. I’m here to help readers of Java Developer’s Journal find
a cure for their Java system ills.

Prescriptions for Your Java Ailments
Ask Doctor Java

Q & A

Q

A

Q

A

Q

A

Send your questions, praise,
comments, and admiration to

doctorjava@sys-con.com.

Published letters will be edit-
ed for length and clarity. Any
reference to third parties or
third-party products should

not be construed as an
endorsement by Doctor Java
or Java Developer’s Journal.

59APRIL 2002

Java COM

New Atlanta
Communications

www.newatlanta.com

60 APRIL 2002

Q & A

lowing code snippet demonstrates the
approach:

import java.util.Locale;
import java.util.ResourceBundle;

public class InternationalizedException extends
Exception {

ResourceBundle rb = Resource
Bundle.getBundle("i18nBundle",

Locale.getDefault());

public InternationalizedException() {
super(rb.getString("exceptionKey");

}
}

To learn more about Java and internation-
alization, I suggest visiting the following URL:
http://java.sun.com/doc/books/tutorial/i18n.

I’m using Java and EJBs to
access a legacy system.
Accessing the host each time is
very expensive. The data from the
legacy system is read-only and

I’d like to cache it somewhere. I’m not sure
where it should be stored.

The Java Community Process is
working on the JCache specification
that will solve your problems in the
future. In the meantime, let me see
if I can help you with your problem.

For EJB developers the first thought may be to
store it in a stateful session bean. Stateful
session beans would cause the construction of
the bean for each client access, so this won’t
work. The next idea may be to use stateless
session beans. This won’t work either,
because stateless session beans exist in a
pool and the container determines when and
how many instances will be constructed.

Entity beans may also come to mind but
may not work well either. Remember that the
EJB container can call activate and passivate
anytime it desires. The activate call would
need to retrieve the value from your legacy
system again.

Some developers might consider using the
Singleton pattern in this situation. This works
in very limited situations and never works in a
high-availability situation. As there is never a
Singleton in a cluster, this pattern shouldn’t be
used. Furthermore, in Java a class is unique
based on its ClassLoader, not the Java VM
itself.

Let’s discuss a couple of approaches that
will actually work. First, you can consider
using JNDI to store your data. In many of the
application servers, JNDI is a clusterable
resource, so changes to your read-only data
will be replicated to all instances. A second
approach is to use an RMI server where you
can store copies of your data and have all
EJBs connect to it. For high-availability situa-

tions you’ll need to make the RMI server
aware of other RMI servers that provide the
same function. A third approach is to store
your cached data in an object-oriented data-
base such as Gemstone or Versant. Many
databases optimize I/O and cache the data in
memory, so there won’t be any round-trips
between the database and application server.

How do I set the referrer for a
URLConnection?

The following code snippet demon-
strates how to set the referrer:

URL url = new URL("http://doctor
java.htsco.com");

URLConnection conn =
url.openConnection();

conn.setRequestProperty("Referer","http://doc
torjava.sys-con.com");

InputStream is = conn.getInputStream();
BufferedInputStream bis = new

BufferedInputStream(is);

Of course, you’ll need to catch any
MalformedURLExceptions that might be
thrown.

What is your opinion of Jtrix?

Jtrix is remarkably similar to Jini, as
both offer a distributed-service
model. Jtrix added some useful fea-
tures that don’t currently exist in
Jini, such as a hosting service
where a service can find some-
where else to run and copy itself

into that space. This will allow a Jtrix applica-
tion to scale almost endlessly, as it will distrib-
ute itself as needed. I can see this being a
powerful feature for Web services that in the
future may need to be accessed across the
planet.

Jtrix added accounting features as well.
If a Web service needs to expand via its
hosting service, the provider will need a
mechanism to bill based on resource usage
(CPU, memory, network traffic, and so on).
Lack of an accounting feature will hinder
the growth of all service-based approaches.
The other feature that Jtrix provides is the
complete separation of client and server. In
Jini the client and server have to use the
same versions because they’re in the same
space.

I prefer that developers use Java stan-
dards where they exist and would hope that
the Jtrix team would formalize their work
using the Java Community Process and focus
on making Jini better. If you decide to use
Jtrix, I suggest that the Jtrix netlet export a
Jini service as a default.

J2
SE

H
om

e
J2

E
E

J2
M

E

A

Q

PUBLISHER, PRESIDENT,AND CEO
FUAT A. KIRCAALI fuat@sys-con.com

VICE PRESIDENT, BUSINESS DEVELOPMENT
GRISHA DAVIDA grisha@sys-con.com

A D V E R T I S I N G
SENIOR VICE PRESIDENT, SALES AND MARKETING

CARMEN GONZALEZ carmen@sys-con.com
VICE PRESIDENT, SALES AND MARKETING

MILES SILVERMAN miles@sys-con.com
ADVERTISING SALES DIRECTOR

ROBYN FORMA roybn@sys-con.com
ADVERTISING ACCOUNT MANAGER

MEGAN RING megan@sys-con.com
ASSOCIATE SALES MANAGERS

CARRIE GEBERT carrieg@sys-con.com
KRISTIN KUHNLE kristen@sys-con.com
ALISA CATALANO alisa@sys-con.com
LEAH HITTMAN leah@sys-con.com

E D I T O R I A L
EXECUTIVE EDITOR

M’LOU PINKHAM mpinkham@sys-con.com
EDITOR

NANCY VALENTINE nancy@sys-con.com
MANAGING EDITOR

CHERYL VAN SISE cheryl@sys-con.com
ASSOCIATE EDITORS

JAMIE MATUSOW jamie@sys-con.com
GAIL SCHULTZ gail@sys-con.com
JEAN CASSIDY jean@sys-con.com

ONLINE EDITOR
LIN GOETZ lin@sys-con.com

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN
JIM MORGAN jim@sys-con.com

ART DIRECTOR
ALEX BOTERO alex@sys-con.com

ASSOCIATE ART DIRECTORS
LOUIS F. CUFFARI louis@sys-con.com
CATHRYN BURAK cathyb@sys-con.com

RICHARD SILVERBERG richards@sys-con.com
AARATHI VENKATARAMAN aarathi@sys-con.com

ASSISTANT ART DIRECTOR
TAMI BEATTY tami@sys-con.com

W E B S E R V I C E S
WEBMASTER

ROBERT DIAMOND robert@sys-con.com
WEB DESIGNERS

STEPHEN KILMURRAY stephen@sys-con.com
CHRISTOPHER CROCE chris@sys-con.com

A C C O U N T I N G
CHEIF FINANCIAL OFFICER

BRUCE KANNER bruce@sys-con.com
ASSISTANT CONTROLLER

JUDITH CALNAN judith@sys-con.com
ACCOUNTS RECEIVABLE

JAN BRAIDECH jan@sys-con.com
ACCOUNTS PAYABLE

JOAN LAROSE joan@sys-con.com
ACCOUNTING CLERK

BETTY WHITE betty@sys-con.com
S Y S - C O N E V E N T S

VICE PRESIDENT, SYS-CON EVENTS
CATHY WALTERS cathyw@sys-con.com

CONFERENCE MANAGER
MICHAEL LYNCH mike@sys-con.com

SALES EXECUTIVES, EXHIBITS
MICHAEL PESICK michael@sys-con.com

RICHARD ANDERSON richard@sys-con.com
C U S T O M E R R E L A T I O N S / J D J S T O R E

MANAGER, CUSTOMER RELATIONS/JDJ STORE
ANTHONY D. SPITZER tony@sys-con.com

Q

A

Q

A

Q

A

AUTHOR BIO
Doctor Java, aka

James McGovern,
moonlights as an

enterprise architect
with Hartford

Financial Services
(www.thehartford
.com), where he
focuses on the
architecture of

high-availability and
J2EE-based solutions.

Java COM

doctorjava@sys-con.com

61APRIL 2002

Java COM

LOOX
Software Inc.

www.loox.com

62 APRIL 2002

jasonbriggs@sys-con.com

J 2 M E E D I T O R I A LR

A Long Way to Go
JASON R. BRIGGS J2ME EDITOR

H
om

e
J2

E
E

J2
SE

J2
M

E

J 2 M E I N D E X

A Long Way to Go
A strange accident occurred

on my flight back to New Zealand.
Somehow, the plane flew through

a rip in space-time and we wound
up in a freak alternate dimension.

The thing is, it was initially very
difficult to tell that we weren’t in

the right dimension anymore,
because everything was pretty

much the same.
by Jason R. Briggs

Pervasive Computing:
The Next Generation of
Consumer Applications
Let’s face it, there are few real

consumer-level distributed appli-
cations out there. Traditionally,

they’re difficult to build. The tools
and infrastructure needed to sup-
port and deploy wired distributed
apps, let alone wireless ones, are

hard to come by.
by Dan Pilone

Ready to go Mobile and
Wireless with J2ME?
When I hear that organiza-

tions have decided to enter the
wireless/mobile space I often

think of the television commer-
cial in which two businessmen

say confidently to each other,
“We can do that!” And then in
the next breath they mumble,

“How are we going to do that?”
by James White

Astrange accident occurred on my
flight back to New Zealand.
Somehow, the plane flew through

a rip in space-time and we wound up in a
freak alternate dimension. The thing is, it
was initially very difficult to tell that we
weren’t in the right dimension anymore,
because everything was pretty much the
same. But then I picked up an Australian
computer magazine and read an editorial
in which the writer, I’ll call him Mr.
KnowNothing, was talking about how Bill
Gates had underestimated the Internet ini-
tially but eventually had turned Micro-
soft around to become a technology leader
with its .NET strategies.

That’s when I knew something must
have happened on that 747 bound from
Sydney to Auckland (and it explains the
severe turbulence). Because in my uni-
verse, .NET was still in beta, and as far as
I’m concerned, the battle certainly wasn’t
over.... Hell, we were just starting to warm
up. As I think Alan has mentioned before
(in this dimension he’s world famous as
the character Blane Evans, on “Days of
our Lives”), all Microsoft has done is
repackage ideas that have been around
for a long time (a process I believe they
refer to as “innovation”), which hardly
qualifies them as a technology leader. But
it seems, according to Mr. KnowNothing,
in this dimension Microsoft has won the
war.

In desperation I’ve invented a machine
in my garage – mainly constructed from
old computers, car stereo parts, the laser
component from a DVD player, and a
hyperactive hamster called Gerald (to pro-
vide power) – that will transport me back to
my original dimension. My one worry is
that if I miscalculate, I could end up in the
dimension where Visual Basic became the
only language for serious computer work,
or (shudder) Modula-2. It doesn’t bear
thinking about really.

• • •

Since coming home I’ve had a vivid
illustration of just how far Java has to go.
Everyone knows Microsoft, of course. An
almost microscopic percentage of those
who don’t work in the industry (i.e., one
person) have even heard about .NET, but
Java still brings blank faces, or thoughts of
Indonesian islands and coffee to the
majority (this is not to say that people in
my small hometown are ignorant com-
pared to Londoners, rather that when
returning home, you are invariably asked
by all and sundry what you’ve been doing
for the past few years).

In the past, I haven’t worried that Java
wasn’t too well known. In fact I’ve person-
ally been hoping the profile stays low – at
least in the wireless space – but that pene-
tration of the market will become more
widespread. Now I’m not so sure. As Rick
Ross, president of JavaLobby, says, there
are 200,000,000 reasons to take .NET seri-
ously. And while you might not think that
.NET will have any impact on J2ME, with a
company that has the resources to spend
that much money just on marketing, you
do have to wonder.

Now I want Java logos on everything.
Just in case.

• • •
High-performance – not something

you might typically associate with a MIDP
application. But a press release from
esmertec recently caught my eye with a
project that might have a chance to change
that, at least for Intel-based (PXA250
and PXA210) mobile devices. esmertec’s
announcement that they would be work-
ing with Intel Corp. to “deliver optimized
Java solutions for high-performance
mobile computing using the Intel XScale
microarchitecture and Intel Flash Data
Integrator (FDI)” is another of those flow-
ery phrases that marketing people love lit-
tering press releases with. But it means
that another big player (Intel), which hasn’t
generally been that visible in the Java

AUTHOR BIO
Jason R. Briggs is a Java analyst programmer and – sometimes – architect. He’s been officially

developing in Java for almost four years, “unofficially for five.”

Java COM

64

74

62

world, is, at the very least, thinking about
J2ME as a viable platform. Hopefully at the
end of it, we’ll see more devices on the market
capable of running MIDP apps at better
speeds. I’m still waiting for “MIDP Quake” on
a mobile phone....no let me qualify that...
“MIDP Quake” running at a high speed on a
mobile phone. Go esmertec!

• • •
In this month’s J2ME section, Dan Pilone

talks about distributed computing in the
J2ME world, while James White discusses
some of the issues you should be thinking
about before starting on a mobile or wireless
application.

63APRIL 2002

QUALCOMM
Incorporated

www.brew2002.com

Java COM

Java COM

64 APRIL 2002

Pervasive Computing:
the Next Generation of Consumer Applications

D I S T R I B U T E D A P P L I C A T I O N S

I discuss some of the problems that
historically have held back distributed
development, present an example next-
gen application using J2ME, and then
discuss some of the architectural issues
inherent in distributed consumer soft-
ware.

Let’s face it, there are few real con-
sumer-level distributed applications out
there. Traditionally, they’re difficult to
build. The tools and infrastructure
needed to support and deploy wired dis-
tributed apps, let alone wireless ones,
are hard to come by. CORBA 1.0 was
introduced in 1991 and has found a
home in enterprise development.
Netscape made a valiant attempt to
incorporate Visigenic’s ORB into their
product line, but failed to make CORBA
commonplace on the desktop. Micro-
soft has gone through four component
technologies, admittedly not all of them
distributed, and is just beginning to
make distributed computing a reality on
the average user’s desktop. Probably the
most successful consumer-level distrib-
uted applications are the RC5 or SETI
clients that are being used around the
globe to look for E.T.

However, times have changed.
Software developers now have tools that
make designing and building distrib-
uted applications easier than ever.
Wireless technologies and broadband in
the home have helped meet the com-
munication requirements. While tech-
nologies such as 3G wireless are still a
little way out, developers should be

planning for the changes that pervasive
communications will introduce. There
are still some psychological and techni-
cal hurdles to overcome, but hopefully
the example application will put some
of these to rest. Now the question is:
“How can a developer leverage the avail-
able tools to make an application that’s
useful for the consumer?”

Users (developers and nondevelop-
ers alike) tend to be task-focused. An
application is a tool that gets the job
done. The idea behind distributed con-
sumer applications is to provide the user
with this tool in a variety of different
environments. The key is using the right
tool for the right job. For example, a pro-
fessional carpenter may use a nail gun
to frame a house, but a regular hammer
to build a tree house. The goal is to nail
two pieces of wood together, but the tool
varies depending on the environment.
Thinking this way about consumer soft-
ware opens up a whole new type of
application development.

A Hands-on Demo
To demonstrate how easy it is to

build a distributed application, this arti-
cle presents a distributed text editor. It’s
a very simple example of a next-genera-
tion consumer application. The editor
allows users to create, load, edit, and
save text files. More advanced features,
such as spell checking and laying out
documents, are discussed from an
architectural perspective, but not imple-
mented. In the spirit of pervasive com-

puting, users should be able to perform
these functions on their data from any-
where using a variety of devices. The
sample application will have a Swing-
based desktop client and a J2ME-based
medium client. All the tools used to
develop, test, and deploy this applica-
tion are freely available and referenced
at the end of the article.

Before we get into the technical
details of the implementation, let’s nail
down what we mean by distributed con-
sumer applications:
1. Clear separation between the client

and the “back end”
2. Transparent support for multiple

types of clients
3. No requirement for a dedicated server
4. Different clients transparently access-

ing the same data

By following these principles, we can
separate the tool (the client piece) from
the task (various “back-end” functions).
This follows the typical thin-client
enterprise application pattern so far, but
items 3 and 4 change things slightly. Our
back end should not require a dedicated
server, meaning we want to get away
from the typical enterprise application
server that supports large numbers of
users. Instead, we want a lightweight,
personal application server that sup-
ports a much smaller number of users.
Traditional application server capabili-
ties, such as failover or high-end scala-
bility, are not needed for these simpler
applications. Finally, the back-end func-

WRITTEN BY
DAN PILONE

How enterprise software is written has undergone a
major shift with the introduction of distributed technologies like
EJBs and Web-based thin clients. However, this new approach to
writing software has not trickled down to consumer applications
such as recipe managers, cookbooks, or word processors.

Leverage the new capabilities

H
om

e
J2

E
E

J2
SE

J2
M

E

65APRIL 2002

Java COM

PointBase, Inc.
www.jdj5.pointbase.com

Java COM

66 APRIL 2002

D I S T R I B U T E D A P P L I C A T I O N S

tionality operates on the same set of
data regardless of the client being used.
A user running the PDA client has access
to the same data that was edited with
the desktop client.

In the example application, this
back-end functionality is provided by
EJBs. EJBs make writing the distributed
back end easy, however, they’re not the
ideal solution. Application servers
require configuration and are much
more comfortable on higher-end
machines. A lightweight application
server would be a better solution.
Failover, clustering, and possibly even
transaction support may be removed to
help make a lightweight application
server more desktop-friendly.

Client technologies are in better
shape. Even if you restrict your selection
of client platforms to Java, there are sev-
eral options for scaling from the J2SE
desktop client to the J2ME thin client.
The sample application uses both to
demonstrate transparent data accessi-
bility.

Under the Hood
The application is a typical n-tiered

application, in this case, two tiers.
(Some would argue three, with persis-
tent storage being the third. However,
since we’re simply saving information to
the local file system with no DAO type
pattern, I’m hesitant to call that a tier.)

The application uses the
file system directly, rather
than a database, in keeping
with the consumer-level
concept. Figure 1 shows
the clean separation be-
tween the clients and the
service-based back end

In a typical enterprise
development process we
would identify key use
cases or user stories. Since
we’re trying to separate the

“tasks” of the application
from the GUI, we’ll use this approach. To
keep things simple, we’ll stick with these
four key tasks:
1. Create a new document
2. Load a document
3. Edit a document
4. Save a document

We’ll use a stateless session bean, the
TextEditorService, to provide the inter-
face to our back end (see Figure 2).

Basic editing of the text document
will be the responsibility of the client.
Since we’ll be accessing the file system
directly from the TextEditor, implement-
ing the load and save methods of the
bean is easy. The getDocument method
is shown in Listing 1.

As mentioned before, we’ll provide
two different clients, Swing-based and
J2ME (see Figures 3 and 4, respectively).

The next architectural issue to be
addressed is the communication be-
tween the tiers. Even if we were building
a Java-only solution, directly accessing
the TextEditorService bean would not be
a viable option because of our J2ME
client. Regardless, since we are design-
ing a services-based application, we
should try to stick to standards used in
similar applications. We’ll use SOAP to
communicate with our services layer.
SOAP clients are available for nearly
every language on just about every plat-
form, including J2ME. On the server side

we’ll use Apache SOAP to deploy our
TextEditorService. Once Apache SOAP is
up and running, we can deploy our ser-
vice with the SOAP descriptor shown in
Listing 2.

For simplicity, we’ll be using the
Apache SOAP RPCrouter as our servlet
interceptor rather than providing our
own as suggested by the Sun Blueprints.

For our desktop client we can simply
use the client side of Apache SOAP.
However, our J2ME client needs a spe-
cial implementation due to tight memo-
ry and performance requirements.
Fortunately, a great J2ME SOAP library is
available from Enhydra.org, kSOAP. Built
on top of kXML, the XML parser and
SOAP client together total about 50K.
The J2ME client was compiled and test-
ed using Sun’s J2ME Wireless Toolkit.
Start ktoolbar, create a new project, and
simply place the ksoap.jar and kxml-
min.jar in the newly created lib directo-
ry. Any JARs placed in this directory are
automatically added to the classpath
when the toolkit compiles your applica-
tion.

To hide the SOAP interface, we’ll cre-
ate a proxy class that mirrors our
TextEditorService interface; however,
the method implementations will use
SOAP to make the actual calls (see
Figure 5 and Listing 3). Note: In our
proxy we hard-coded the URL to our
SOAP interceptor. This obviously is not
the ideal solution and should really be
part of the deployment information.
However, for the sake of simplicity, it’s
hard-coded in the source. Our J2ME
application will simply make calls to the
proxy, unaware that the call is actually
being routed to our EJB service.

As seen in Listing 4, our J2ME client
creates one form and one text editor
widget. The form has space for the user
to enter the file name and buttons to
retrieve the document. When the docu-
ment is successfully loaded, the editor is
displayed until the user clicks Save or
Cancel. Save executes a call to the proxy
to store the document using the back
end, and Cancel simply redisplays the
original form.

The Swing client functions similarly:
two JButtons to load and save the docu-
ment, and a JTextArea to allow the user
to edit the document. Again we’re using
a proxy class to wrap our SOAP interface.
kSOAP can be used with J2SE if we use
the SE transport, so we could reuse our
existing J2ME proxy class (isn’t Java
wonderful?). However, we’ll use the
Apache client to demonstrate using a
different SOAP implementation.

Once the clients are compiled, the
Swing client can be started from the

FIGURE 1 Text editor component diagram

FIGURE 2 TextEditorService remote interface

H
om

e
J2

E
E

J2
SE

J2
M

E

67APRIL 2002

Java COM

Quintessence
Systems Limited

www.in2j.com

Java COM

68 APRIL 2002

D I S T R I B U T E D A P P L I C A T I O N S

command line. Enter some text in the
text area, enter a filename, then click
Save. The Swing client then uses the
proxy to make a SOAP call to the EJB
back end. The TextEditorService will
then save the file on the local file system.
Now we can start the J2ME client, either
through the Wireless Toolkit’s emulators,
or on an actual J2ME device such as a
Palm VII or JavaPhone.

Type in the same file name and click
Load. The J2ME client uses the EJB back
end to retrieve the same document.
While this is obviously a very simple
application, it demonstrates the key
concepts of distribution, multiple
clients, and transparent access to back-
end data. However, to some extent this is
the easy part.

Architectural Issues
When discussing software architec-

ture, key architectural drivers are often
referred to as the “-ilities” – reliability,
scalability, etc. Providing a distributed
consumer application has some of the
same “-ilities” as an enterprise applica-
tion, plus a few that are somewhat
unique to the consumer nature of the
application. Below are guidelines to
help address these issues and hopefully
spur discussion when the solution is not
clear.

Security
Security is obviously not unique to

consumer applications, however, con-
sumers are not expected to log in to each
application before use. To make matters
worse, distributed applications inher-
ently make data available to external
clients. Securing the communication
channel is a must, and, thanks to the
XML format used by SOAP, can be easily
accomplished with a secure sockets
layer (SSL), such as HTTPS to the back
end. However, authenticating the user
with the back end is more difficult.
Ideally the user wouldn’t need to be
involved in the authentication using a
public/private key type system. How-
ever, since these applications specifical-
ly target devices that can be misplaced
or stolen, such as cell phones and PDAs,
relying on device authentication is not
an effective means of security. Since
authentication will be needed for each
application, a common framework
should be developed. It’s possible that
projects, such as the Liberty Alliance
project, may provide an authentication
mechanism that could be used for con-
sumer applications. However, this proj-
ect is still in the formative stage and a
solution is needed immediately.

Designing a security framework for
distributed applications is beyond the
scope of this article, however, a few key
features may be identified:
1. Single sign-on for applications
2. Same authentication credentials

regardless of client
3. A fully encapsulated security compo-

nent that may be easily shared
between applications

4. Support for communication channel
encryption

5. No reliance on the underlying back-
end component model

While these requirements are not
unique, they need to be met on a wide
range of platforms, including limited
devices such as cell phones. A quick
and dirty solution is to use HTTPS for
SOAP communications and make use
of the application server’s credential
support by using cookies to transfer
session keys back to the client. J2ME
clients can use the CLDC record sup-
port to persist this information
between invocations. However, since
records are not shared between J2ME
applications, this is not an ideal solu-
tion. J2SE applications fare somewhat
better in that a convention can be
established to store credential informa-
tion. As with a typical Web application,
credential information will need to
expire after a given period of time to
avoid the problem of “authenticating
the device, not the user.”

Task Partitioning
Identifying the physical location of

functionality is a key part of architect-
ing a distributed application. The
“thin-ness” of the client must be
weighed against the ability to use the
application without requiring a round-
trip to the back end. It’s conceptually
possible to have thicker clients offering
functionality not found on other
clients. However, if this functionality is
desired on one of the thinner clients, it
must be replicated on the back end. A
cleaner approach would be to provide
as much functionality as possible in
the back end and access it from the
appropriate clients. Determining client
“appropriateness” depends on several
factors:
1. GUI and processing capabilities of the

intended device
2. “Cost” of communicating with the

back end, including time, availability,
and possible financial costs

3. Amount of interaction required by the
user

4. Intermediate store requirements
placed on the client

By carefully partitioning functional-
ity, it’s possible to minimize the inter-
action and cost to the user. For exam-
ple, spell checking may be added to our
text editor. The spell-checking service
may be written so the entire document
is checked and the results, identifying
which words were not found in the dic-
tionary, are returned to the client.
These words could be identified by
their position in the document rather

FIGURE 3 Swing TextEditor client

H
om

e
J2

E
E

J2
SE

J2
M

E

FIGURE 5 getDocument Sequence diagramFIGURE 4 J2ME TextEditor client

69APRIL 2002

Java COM

Thought Inc.
www.thoughtinc.com

D I S T R I B U T E D A P P L I C A T I O N S

than the actual word to reduce the
bandwidth required. However, this
places the burden on the client to be
able to find the identified word. On
small memory devices this may not be
possible. Once the word is identified,
the user may correct it and the correc-
tions are returned to the back end for
integration.

Another example of properly parti-
tioning tasks would be needed if we
expanded our text editor to support
several fonts and styles. Displaying
and editing font information would be
easy on a Swing-based client; however,
it would be nearly impossible on a Java
phone. Instead, the back end may pro-
vide services to retrieve the content
separately from the markup informa-
tion. Users can use the desktop client
to produce their initial document,
then make a few quick adjustments
with their cell phone. The back end
would retain markup information pro-
duced by the desktop client even
though the cell-phone client can’t
make use of it.

Hardware Demands
While the example application used

EJBs to provide back-end functionality,
a lighter weight component model
would be more desirable. More specifi-
cally, a lightweight application server
could make desktop-based distributed
applications more of a reality. As men-
tioned earlier, the scalability and fault
tolerance requirements for a desktop
application would be much less than
that of an enterprise application.

However, EJBs do make developing dis-
tributed applications relatively easy
compared to building CORBA compo-
nents. In addition to hardware require-
ments, automated installation and
setup would be required. Installing a
distributed application shouldn’t re-
quire any more knowledge on the part of
the user than a standard application.
However, this places the burden on the
application server and the application
developer.

It would also be helpful for back-end
developers to have a database at their
disposal. Again, if properly configured
and accessible from the application
server, the user interaction would be
kept to a minimum.

In all fairness, Microsoft has already
provided most of this with their current
operating systems, though not for the
Java platform. It’s time for the Linux dis-
tributors to step up to the plate and offer
the user a similarly preconfigured set of
back-end services.

Integration with Web Services
There has been much talk about Web

services and .NET recently. Con-
ceptually they’re similar to the ser-
vices-based, back-end approach out-
lined here. By leveraging SOAP between
your clients and the back end, newly
developed consumer applications are
poised to integrate with Web services
should they become widely available to
the consumer.

In the meantime, applications may
be developed and deployed without
requiring a subscription model or inte-

gration with an external system.
Desktop clients can be deployed imme-
diately and will appear identical to
applications currently available. As
wireless devices become more preva-
lent, more and more application devel-
opers can release PDA thin clients to
take advantage of previously installed
back ends.

Conclusion
Now that broadband connections

are becoming commonplace and wire-
less technology is becoming a reality,
developers should begin positioning
their applications to leverage the new
capabilities. The tools to develop and
deploy these new applications are freely
available and quite mature. However,
end-user support is much further
behind.

Acknowledgment
I would like to thank three colleagues

for their suggestions, discussions, and
reviews: Michael Hudson, Christian
Nelson, and Rich Newcomb.

References
1. JBoss Application Server: www.jboss

.org
2. Ant: http://jakarta.apache.org
3. Apache SOAP: http://xml.apache.org
4. kSOAP: http://ksoap.enhydra.org
5. J2ME Wireless Toolkit: http://java.

sun.com
6. JDK 1.4b3: http://java.sun.com
7. Netbeans 3.3: www.netbeans.org

AUTHOR BIO
Dan Pilone is a

software architect for
Blueprint Technologies

and an active
contributor to the

open source
community. pilone@slac.com

H
om

e
J2

E
E

J2
SE

J2
M

E

/**
* Returns the text of the document specified in documentName.
*/

public String getDocument(String documentName)
{

System.out.println("getDocument(" + documentName +")");
StringBuffer documentText = new StringBuffer();

try
{

// We prepend /tmp to prevent creative people
// from hosing our system...
BufferedReader inStream =

new BufferedReader(new FileReader("/tmp/JDJTemp/" +
documentName));
String tmp = inStream.readLine();
while (tmp != null)
{

documentText.append(tmp);
tmp = inStream.readLine();

}
}
catch (IOException e)
{

documentText.append("<Error reading document>");
}
return documentText.toString();

}

<?xml version="1.0"?>
<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"

id="urn:TextEditorService">
<isd:provider
type="org.apache.soap.providers.StatelessEJBProvider"

scope="Application"

methods="getDocument saveDocument">
<isd:option key="JNDIName"

value="TextEditorServiceHome"/>
<isd:option key="FullHomeInterfaceName"

value="com.pilone.texteditor.TextEditorServiceHome" />
<isd:option key="ContextProviderURL"

value="nova.slac.com:1099" />
<isd:option key="FullContextFactoryName"

value="org.jnp.interfaces.NamingContextFactory" />
</isd:provider>
<isd:faultListener>

org.apache.soap.server.DOMFaultListener
</isd:faultListener>

</isd:service>

import org.ksoap.*;
import org.ksoap.transport.*;

public class TextEditorServiceProxy
{

public String getDocument(String documentName)
{

String document = null;
try {

SoapObject rpc = new SoapObject("urn:TextEditorService",
"getDocument");

rpc.addProperty ("documentName", documentName);
HttpTransport transport = new HttpTransport("http://www.sys-

con.com/soap/servlet/rpcrouter", "");
document = transport.call(rpc).toString();

}
catch (Exception e) { e.printStackTrace(); document = e.toString();

}
return document;

}

public void saveDocument(String documentName, String documentText)

Listing 3

Listing 2

Listing 1

Java COM

70 APRIL 2002

71APRIL 2002

Java COM

Borland
Software Corp.

www.borland.com/new/optimizeit/94000.html

Java COM

72 APRIL 2002

{
try {

SoapObject rpc = new SoapObject("urn:TextEditorService",
"saveDocument");

rpc.addProperty("documentName", documentName);
rpc.addProperty("documentText", documentText);
HttpTransport transport = new HttpTransport("http://www.sys-

con.com/soap/servlet/rpcrouter", "");
transport.call(rpc);

}
catch (Exception e) { e.printStackTrace(); }

}
}

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.io.*;
import javax.microedition.io.*;

// SOAP imports...
import org.ksoap.*;
import org.ksoap.transport.*;

public class TextEditorClient extends MIDlet
implements CommandListener

{
public TextEditorClient ()
{

// Create the main form
mainForm.append(m_DocumentName);
mainForm.addCommand(m_GetCommand);
mainForm.addCommand(m_SaveCommand);

// Create the document viewing form
m_DocumentText.addCommand(m_SaveCommand);
m_DocumentText.addCommand(m_CancelCommand);

// We'll handle button presses for both
mainForm.setCommandListener (this);
m_DocumentText.setCommandListener(this);

}

public void startApp ()
{

Display.getDisplay (this).setCurrent (mainForm);
}

public void pauseApp ()
{

}

public void destroyApp (boolean unconditional)
{

// We could persist our current document
// to a record store here if needed

}

public void commandAction (Command c, Displayable d) {
// Find out which command was activated
if (c == m_GetCommand)
{

// Retrieve the document name, then retrieve the
// document from our proxy.

String documentName = m_DocumentName.getString ();
m_DocumentText.setString

(m_TEProxy.getDocument(documentName));
Display.getDisplay(this).setCurrent(m_DocumentText);

}
else if (c == m_SaveCommand)
{

// Ask our proxy to save the object,
// then return to the main form

m_TEProxy.saveDocument(m_DocumentName.getString(),
m_DocumentText.getString());

Display.getDisplay(this).setCurrent(mainForm);
}
else if (c == m_CancelCommand)
{

// Simply redisplay the main form. We can ignore
// changes that were made to the document since
// the only way to return to this screen is to
// try to load a document that will refresh the
// contents of our document variable

Display.getDisplay(this).setCurrent(mainForm);
}

}

private Form mainForm = new Form("Text Editor");
private TextField m_DocumentName =

new TextField("Document Name:", "foo", 100, TextField.ANY);
private TextBox m_DocumentText =

new TextBox("", "", 1000, TextField.ANY);
private Command m_GetCommand =

new Command("Load", Command.SCREEN, 1);
private Command m_SaveCommand =

new Command("Save", Command.SCREEN, 1);
private Command m_CancelCommand =

new Command("Cancel", Command.SCREEN, 1);
private TextEditorServiceProxy m_TEProxy =

new TextEditorServiceProxy();
}

Listing 4

H
om

e
J2

E
E

J2
SE

J2
M

E

Aquarius
Solutions

www.aquariussolutions.com

Northwoods
Software

Corporation
www.nwoods.com

73APRIL 2002

Java COM

InetSoft
Technology Corp.

www.inetsoft.com/jdj

Java COM

74 APRIL 2002

When I hear that organizations have decided to enter the
wireless/mobile space I often think of the television commer-
cial in which two businessmen say confidently to each other,
“We can do that!” And then in the next breath they mumble,
“How are we going to do that?”

If your organization has decided to enter the Java
mobile and wireless arena, but you aren’t sure what you’re
getting into, then stay tuned, because this article is for
you. It discusses the two general areas to consider when
entering the Java mobile and wireless technology space,
which is primarily guided by the Java 2 Micro Edition
(J2ME) specifications.

First, I discuss the issues involved in collecting the require-
ments and dealing with the user community as you plan the
development of your applications. You’re probably familiar
with how to gather requirements and design a system with
your user community when the target platforms are desktops
and servers. I’ll provide some real-world experiences and tips
on working with your user community to scope out and
design mobile and wireless applications.

Second, we examine some of the software engineering
issues that go into making your application. These include
issues in dealing with a limited user interface, security, data
synchronization, performance, portability, application sup-
port, and configuration management. You’ll encounter sever-
al if not all of these issues when you start to develop your
application. At least you should know where some of the
design and development “alligators” reside and have some
tips on how to deal with them.

Dealing with the User Community
Java mobile and wireless applications will often work inside

resource-constrained devices like cell phones and PDAs. In
many cases, your user community will want to perform many of
the same types of operations and communicate using the same
data as when they’re operating their desktop computers. The
trick is fitting that functionality and data into a small device.
How do you do this? By helping your customers understand this
new paradigm, and allowing them to help you “shrink” the
application and data into the smallest footprint possible.

H
om

e
J2

E
E

J2
SE

J2
M

E

Java COM

75APRIL 2002

Java COM

Pramati
Technologies

www.pramati.com

Java COM

76 APRIL 2002

Constraint Busters
Near the front of every J2ME specification is information

about the types of devices that the development environment
and the tools built on the specifications are meant to support.
Typically, this is a list of constraints on the computing device
that the J2ME specification has been specifically designed to
address. The list usually includes constraints on one or more
of the following:
• Memory
• Power
• Connectivity
• User interface

These will be the most frequently incurred obstacles in the
development of your J2ME applications. As you prepare to
design and build your application, push to find out any and all
information that may challenge these constraints. Continue to
ask yourself and the user community “how” types of ques-
tions.
• How much data will actually be used to complete an opera-

tion and what data is nice to have?
• How long will the application be used on a given day?
• How often will the system be recharged?
• How long between data synchronizations?
• How convenient will it be to enter the data by keypad or

Graffiti?
• How focused will the user’s attention be on the device/

application?

Setting Expectations
The user community, in the span of their collective life-

time, has seen incredible advances in information systems.
They now rely on laptops and desktops connected to compa-
ny networks and servers for a wave of information. However,
porting what might be on a desktop or server onto a Palm
device will be tough.

Your first task as a new mobile/wireless architect is to get in
touch with and hopefully manipulate the expectations of your
user community. Early and often, you must communicate
what is possible and what may be feasible but yet inappropri-
ate for mobile/wireless technology. The key is to get the users
out of the mode of expecting the next, better laptop or desk-
top. They’ve become accustomed to seeing more powerful
systems and resources made available with each new platform
or release of your software. At least as far as the hardware is
concerned, moving to a truly mobile or wireless device will be
a big step back for them. Start working on this understanding
early.

Good/Bad/Ugly Mobile and Wireless Applications
J2ME mobile and wireless technology is a tool and tools

can be used appropriately or inappropriately. J2ME can be
used very effectively to extend enterprise information systems
out to the mobile and wireless users in need of corporate data.
For example, J2ME can be used effectively to put pricing cal-
culators and updatable product catalogs in the hands of sales
force personnel.

A J2ME application can also be used to coordinate the
schedules and maneuvers of company personnel and equip-

ment such as those owned by a delivery service. J2ME can pro-
vide a good platform when you need to have the client device
perform an operation in both connected (usually wireless)
and disconnected modes.

But J2ME has its limits. Using J2ME on a cell phone to take
an entire bank loan application may be feasible, but probably
not very useful. How often will a loan officer make a house call,
and how easy would it be to enter all that data on a cell phone
keypad? Therefore, don’t just look at whether moving an enter-
prise application to mobile/wireless platforms is possible,
look at whether it makes sense. In other words, what is the
value of having the application on a mobile/wireless platform?

Device Familiarity
How many of your users currently have wireless/mobile

devices? If they’ve never used a Palm device or only use their
cell phones to make telephone calls, then it’s probably a good
idea to educate them to the paradigm. Operating an applica-
tion running on the Palm OS or using a cell phone keypad to
enter character data is different than running a Windows-
based application or using a Web browser on a laptop or desk-
top system.

Get the targeted devices for your applications in the hands
of your users early. They won’t contain your application yet,
but the paradigm familiarization will help you in two ways.
One, users of these devices will have a better idea of how the
applications on these small devices work. They’ll be better
equipped to help you create requirements and designs for

your application. Their expectations will be easier to manage
when they know more about the device and how it typically
operates.

Two, once your application is fielded, more knowledgeable
users will make your life infinitely easier as issues begin to
manifest (as they always do) in the field. If your user commu-
nity can’t operate and help maintain their own devices, you’ll
have a much tougher time getting important diagnostic infor-
mation from them.

Remember, these devices are mobile. The users will have to
get software updates from you and learn how to do mainte-
nance and support activities. The more comfortable the user
community is with the device, the less time the devices spend
in FedEx packages between the user community and you, and
the more time they spend on the road where they provide
value to the company. Give them the devices and allow them
to play with the address books, calendar software, and other
software already present. The more they get attached to the
device, the more likely they’ll want to see your application
succeed.

Requirements Gathering and Design
Whether you develop formal requirements and analysis

documents, or informally get your users together to determine
what functionality should be in your application, make every
effort to separate yourself from the lexicon and paradigm of
today’s desktop or laptop applications. Terms such as file,
mouse, dropdown box, menu, or window may have no real
equivalent in J2ME platform(s) and applications. For example,
many phone and PDA devices have an operating system that

H
om

e
J2

E
E

J2
SE

J2
M

E

Java COM

“Once your application is fielded,
more knowledgeable users will make your life infinitely easier as

issues begin to manifest (as they always do) in the field”

77APRIL 2002

Java COM

Softwired, Inc.
www.softwired-inc.com

Java COM

78 APRIL 2002

has no real file system, much
less a directory or file.

Start the paradigm shift right
away. Don’t let terms and pat-
terns of bigger and more power-
ful platforms creep into your
requirements and design discus-
sions. Expectations can again be
kept in check and you won’t be
left with the task of how to
implement or mimic desktop-
style functionality on a resource-
constrained device.

As you gather your require-
ments and design your applica-
tion, also consider where, not
just how, your application will
be used. A small device can be
transported into many environ-
ments in which your applica-
tions may not be today. For
example, your J2ME application
may be operated by a salesper-
son who is seated in front of a
client, or in the hands of a truck

driver whose focus, hopefully, is
on the road and not on the device. The device may be used in
bright sunshine or in the dark. It can also be easily lost or
stolen.

Most of us have been developing applications that reside
on desktops and laptops that live in cubicles or offices and are
operated, typically, by chairbound users. Do your require-
ments and application designs encompass not only the
desired functionality requested by the user community, but
also the surrounding environment that impacts the use of the
application? For example, a lot of information in tiny font on a
single screen may require more attention than the user can
spare at any one time. Likewise, sales force applications that
beep or make other sounds may offend prospective clients.

Explain the Limits
As you begin to understand the requirements and work

with the user community to design the J2ME application,
know the limitations of your target platforms and share this
information with the users. If, for example, the user communi-
ty wants to put a product catalog database and an application
for accessing it on a PDA and you know this database is 2M
larger than all the storage capacity of the biggest PDA, then
share this with them. I like to tell architects to “do the math”
with their users. You don’t have to be a computer hardware
engineer to understand that 4M of data will not fit into a sys-
tem capable of holding 2M of information. They will get it and
help you find ways to work within the limitations when they
know what they are.

For example, in a recent project, a group of doctors helped
whittle down an enormous database of clinical diagnoses used
in insurance billing activities to the few hundred most often
used ones. Thus they could use this application to complete
more than 90% of their billings, an acceptable percentage to
this group of doctors.

When you’re not sure of the performance or capabilities of
your device, do some quick prototyping. Wireless transmis-
sions in connection with data synchronization are often areas
that require some testing to determine if the transfer rates and
processing times are acceptable. If the user community is
aware of the results, they may even be prepared to put stan-
dard operating procedures in place that go into effect with the

delivery of your application and the devices. For example, in
another recent project, frequent (sometimes as many as three
times a day) synchronization of data was required by the user
in order to avoid a very time-consuming and difficult data syn-
chronization that occurred at the end of each day. This was
made part of the user documentation and enforced by the
product manager.

Dealing with the Devices
Once you understand what mobile and wireless functional-

ity you want to deploy to, your task as an architect or develop-
er is to design and build the application. A few items that
impact success and plague new mobile/wireless engineers are
listed here.

Portability
The benefit of using J2ME or any micro Java environment

to build your applications for mobile and wireless devices is
writing software that’s portable to a variety of platforms.
Unlike the Java 2 Standard Edition or Java 2 Enterprise Edition,
J2ME application portability requires more architectural fore-
sightedness. A J2ME application is built on a configuration
that provides the basic Java services for a large number of
devices and a profile that provides for the specific needs (such
as graphical user interfaces, persistent storage) of a specific set
of devices such as cellular telephones and pagers. Portability
across platforms served by the same configuration/profile
combination is straightforward. Portability across configura-
tions and/or profiles can be more complicated.

The user interface creates the most issues in application
portability. Some of the issues surrounding user interface
portability are discussed later in this article. A good measure to
take, so that your applications port more easily, is to partition
the application along UI and business logic boundaries. Thus
the model-view-controller paradigm applies to your J2ME
application as it did in your J2SE or J2EE applications.

In general, architects are left with two general approaches
to dealing with issues of portability. At one extreme, the archi-
tect can choose to isolate and modularize the piece of the
application that may vary across platforms. Partitioning out
the UI exemplifies this type of development. Layering the
application, however, can lead to more code that can cause
footprint issues.

At the other extreme, the architect can choose to utilize the
lowest common denominator available among the configura-
tion/profile combinations used on the various platforms. For
example, floating point numbers are not supported in the
Connected Limited Device Configuration (CLDC) but are sup-
ported in the Connected Device Configuration (CDC). To avoid
any potential porting issues between these two configurations,
an architect taking the lowest common denominator ap-
proach would simply avoid using floating-point numbers in an
application at the expense of greater functionality in larger
platforms.

User Input
Given the lack of a keyboard and mouse, data entry on the

small screen of many J2ME devices is a real challenge. Even
though many devices now have foldout keyboards for use with
their device, this type of apparatus can make the device less
mobile. In most cases, user input will be handled with a point-
ing device like the stylus on a PDA or via a small keypad such
as that found on a cell phone or pager. Many PDA devices, like
Palm OS devices, offer a mechanism for capturing stylus
movement over a touch-sensitive area of the display. Even
these input devices can create user backlash because of the
need to learn special shorthand for data entry and the difficul-

H
om

e
J2

E
E

J2
SE

J2
M

E

Java COM

FIGURE 1 Virtual keyboard

FIGURE 2 Jump-to buttons

79APRIL 2002

Java COM

Fiorano
Software

www.fiorano.com/tifosi/freedownload.htm

Java COM

80 APRIL 2002

ty the system sometimes has in
interpreting some users’ input.

When designing user interfaces, I
encourage developers to think max-
imum “pokeability.” In other words,
attempt to create applications that
can accomplish 80% or more of
their operations through the touch
of a single key/button or the “tap” or
touch of the stylus to the screen.
Where text entry is required, at least
offer a virtual keyboard to allow the
user to tap in characters from a key-
board-looking display shown on the
screen (see Figure 1). Many of the
PDAs offer this capability built into
the device, but the Java environ-
ment may or may not take advan-
tage of the feature.

Scrolling is another chore that can be a negative experi-
ence in small devices. Given the small screens, it’s difficult to
design user interfaces that don’t require some form of scroll-
ing. However, trying to manipulate a very small scroll bar on a
small screen can be an exercise in hand–eye coordination.
Horizontal scrolling should be avoided at all costs. A limited
amount of vertical scrolling is tolerable, but you may want to
provide “jump-to” buttons that allow for quick and easy move-
ment in a scrolled area (see Figure 2).

In a similar light, users can easily get lost inside a J2ME
application unless some forethought is given to navigational
concerns. Unless you custom-build it, there are no menu bars
or forward/back buttons as there are in Swing applications or
Web browsers. In an application with multiple “screens,” think
about providing buttons/hot keys to switch to the various dis-
plays. Wherever possible, try to avoid having the user remem-
ber any data, or worse, having to compare data across screens.

User Interface
J2ME is a set of specifications for devices ranging, nonin-

clusively, from the smart card to the laptop computer. The
type and shape of user interfaces in this range of computing
devices is vast. Creating the user interface is tough enough –
making it portable is even tougher. Several factors should be
considered when creating J2ME graphical user interfaces.

The screen size, for instance, will vary among platforms.
The typical cell phone may have a screen size no larger than
9,654 pixels. The screen size of Palm OS PDA devices is
160x160 pixels. Most of the J2ME specifications don’t include a
layout manager to help you cope with these screen-size differ-
ences. Therefore, your code will have to serve as a layout man-
ager. There are getWidth() and getHeight() methods that can
help your code obtain the screen dimensions, but some work
will be required to arrange information and UI widgets on the
small screen, especially if seamless portability is required.

Also, many of today’s small platform manufacturers are
introducing color screens. Until the use of color in these small
devices is ubiquitous, avoid the use of color in your UI. In sys-
tems that don’t have color, it may be very difficult to differen-
tiate some elements of your user interface on a screen that
must attempt to gray-shade your use of color. Furthermore,
many of the systems still have passive matrix displays, which
can make reading some colors on the screen extremely diffi-
cult in any kind of natural light.

Finally, unlike the Swing package that universalized Java
UIs on platforms that run standard Java, the widget set among
the various J2ME specs and other micro Java environments
vary. As suggested above, if portability is a chief concern, you

may wish to seek the lowest common denominator in widget
availability across the various specifications. If you wish to
take advantage of more sophisticated UI widgets in higher-
end devices, you’ll want to isolate the user interface as a sepa-
rate layer in your application so that swapping different UIs
based on system capabilities does not create a wholesale
application rewrite problem.

Performance
Depending on the implementation of the J2ME specifica-

tion, the virtual machine may perform at one-third the speed
of the standard JVMs. Given the constrained resources of the
device, performance will always be a concern. Here are some
performance tips to consider while building your application.

Due to resource constraints, garbage collection algorithms
inside many J2ME virtual machines are not as high-perform-
ing or sophisticated as those found in larger JVMs. Therefore,
some performance increase can be obtained by avoiding
garbage generation. A few ideas to help with this goal:
• Use StringBuffer for mutable strings.
• Pool reusable instances of objects like DateFormat.
• Use System.gc() to jump-start or push the garbage collec-

tion process.

Once you’ve determined that the application is working
properly, compile the code with debugging information
turned off. This not only increases the performance of the
application, but also reduces its footprint. To compile your
code with debugging information turned off, use the -g:none
switch in your compile command.

Where possible, avoid deep hierarchies in your class struc-
ture to further improve your performance. Deep hierarchies
require the virtual machine to load and link the superclasses.

Many third-party virtual machines generally perform
many times faster than Sun’s reference implementation. The
options may be limited depending on your platform needs,
but at least explore and consider purchasing a third-party VM.

Data Synchronization
Data synchronization deals with the management of data

on different systems as if it were all on one system. In
mobile/wireless applications, data will be sent to and poten-
tially changed on a device where it must then be returned and
reintegrated (synchronized) with the rest of the enterprise
data. In the last few applications I’ve written, this functionali-
ty has made up as much as one-third of the codebase.

The first issue that must be tackled with regard to data syn-
chronization is to determine which format will be used to
exchange data between the devices and the server. XML would
seem the logical choice, but it carries a price. XML impacts the
size of the data transmitted and XML parsers may be too much
for the allowable footprint. Small third-party parsers are now
available but they’ll still add to the footprint. Serialization is
not available in every J2ME environment, so in many cases
you may be left with simple delimited data as the means to
send data.

Given an understanding of the data and how it will be
transmitted between device and server, there are a number of
distributed data questions that J2ME architects must resolve.
Will data be locked on the server while it’s used on the device?
How much time does the client device have to modify the data
before the server must reclaim ownership and allow others
access to the data? If data is not locked, how many clients will
have access to the data and what happens if both try to update
it? Issues in data use and synchronization can be incredibly
complex and require some extra design time.

Help is on the way. Several database vendors are offering

H
om

e
J2

E
E

J2
SE

J2
M

E

Java COM

FIGURE 3 Buttons/hot keys

81APRIL 2002

Java COM

Sitraka
www.sitraka.com/jclass/jdj

Java COM

82 APRIL 2002

“micro” versions of their database that not only manage per-
sistent storage of the data, but also help perform data syn-
chronization between the enterprise and mobile databases.
However, these databases may not be available for your target
platforms or may require too many resources to satisfy your
needs. Also worth investigating is SyncML. SyncML
(www.syncml.org) is a developing open-industry initiative for
developing standards for data synchronization in both wired
and wireless networks. Until third-party efforts and standards
such as these are available and small enough to satisfy
requirements, data synchronization will continue to occupy a
large amount of design and development time.

Security Needs
In most cases, when using off-the-shelf mobile/wireless

hardware, your application will utilize standard cellular tele-
phone communication channels. These channels are open to
eavesdropping and therefore theft of information. Encryption
packages, such as those provided by the Legion of the Bouncy
Castle (www.bouncycastle.org), can give your application 128-
bit encryption if necessary – especially since many J2ME envi-
ronments don’t yet support SSL.

When considering the need for security, consider the pos-
sibility of loss or theft of the device. Compared to a desktop or
even laptop, misplacing or stealing a cell phone or PDA is
extremely easy. Therefore, you may want to consider whether
the information on the device is password protected. It has

been my experience that many users resist having to enter
some authenticating password in order to use the applications
and data on a device they soon come to view as theirs.
However, these devices may contain very sensitive or impor-
tant information (such as patient information or customer
lists) with the wireless capability to access your enterprise sys-
tems. At least identify and analyze this risk in your require-
ments sessions.

Signing on may prevent unauthorized access to data in the
event of loss or theft (see Figure 3).

Field Support
As your development efforts wind down, the real work in

fielding and supporting your mobile/wireless application will
begin. Remember, once you prepare and distribute the
devices, you may never see the device again. On many of the
projects that I’ve worked on, the mobile users were located
throughout the U.S. Once they get accustomed to having the
tool, they’ll be reluctant to part with it to enable you to add or
remove software or data. Designing and planning how to deal
with deployment and maintenance issues once the system is
in the field cannot be overemphasized. Some consideration
and solutions should be found for the issues covered here.
Experience has taught me that support has been the most dif-
ficult part of building successful systems, and is often the most
overlooked part of development.

How will you provide software updates? Even the best soft-
ware will have a few bugs or changes, especially in early releas-
es. How will these be distributed to and installed on the
devices? How does reference data get updated?

Reference data is data that typically doesn’t change that

often, but is used in running your application. Examples of
reference data include lists of states and zip or area codes.
Your application may include a product catalog or a list of
plant locations as reference data. If this changes, how will this
be updated on the devices? Data synchronization, as suggest-
ed earlier, can be used, but this may require more time and/or
bandwidth than is reasonable for large sets of reference data.

How are backups of the device handled? Hopefully the
users have been well trained and well disciplined enough to
perform their own backups. Unfortunately, most users per-
form backups only after experiencing a failure that teaches
them a lesson. How do catastrophic device failures get han-
dled? Hardware does fail. If the user is able to get the hardware
repaired or functioning again, will they be able to reload the
applications and data on the system? If not, how will this be
accomplished?

Whenever possible, build your applications in such a way
that most of these issues can be handled automatically once
the device synchronizes itself with your enterprise systems.
This requires more work and more code on your part. Often
your application must handshake with a server and both must
determine what is on the device and what must be updated.
More code means a larger footprint. J2ME specifications have
been written to deal with some automatic updating, especial-
ly in the area of application updates through the Java
Application Manager. However, J2ME is not yet equipped to
deal with all types of updates.

Some of these synchronization operations will require
relatively stable and good communication networks. Slow
(9600bps) wireless network speeds that drop after a couple
of minutes may not allow for wireless and automatic
updates, backups, and complex synchronizations.
Prototyping here will help you understand these types of
limitations. Well-trained users, no matter what the actual
mechanism for field support, will always make your job eas-
ier and provide you with alternatives when even the best-
laid plans fall short in a critical event. If the users can actu-
ally help load software and data on their devices, you have a
backup field support plan.

Summary
Extending your enterprise applications onto mobile and

wireless devices using J2ME can be of real value to your
organization. But, as we have seen, there’s nothing small
about building applications for cell phones, pagers, PDAs,
and other such devices. In fact, there may be more issues
and factors to consider as an architect of J2ME applications.
As with most software development, understand the issues
you may encounter and start working on them early and
often.

AUTHOR BIO
James White is wireless practice manager and senior consultant for Fourth Generation, Inc.,
based in St. Paul, MN. He is the coauthor of Java 2 Micro Edition from Manning Publications
and has written several articles on Java and object-oriented topics. Jim also speaks frequently
at industry conferences and spoke on J2ME at this year’s JavaOne.

H
om

e
J2

E
E

J2
SE

J2
M

E

jwhite@fourthgen.com

Java COM

“Designing and planning
how to deal with deployment and maintenance issues once

the system is in the field cannot be overemphasized”

83APRIL 2002

Java COM

Infragistics, Inc.
www.infragistics.com

Java COM

84 APRIL 2002

Since its release in late 1997, the JMS API
has established itself as a core compo-
nent in the Java Enterprise suite. A

number of vendors are offering implementa-
tions of JMS with one of the latest coming
from Ashnasoft Corporation. Although new
to JMS, Ashnasoft has brought its experi-
ence and a reputation from JTurbo (sold to
New Atlanta last year) to the scene.

First released in November 2001, the
current version (released in February) is
AshnaMQ 2.0 Standard Edition. Ashna-
MQ is a JMS 1.0.2 implementation writ-
ten purely in Java. It’s a product that
Ashnasoft claims offers better perform-
ance and higher reliability than their
competitors. The performance and
scalabitity benchmarks and test har-
ness are available from the Ashnasoft
Web site. It supports the full range of
Java editions – J2SE, J2EE, and J2ME –
with good support for mobile messag-
ing solutions. A server-based imple-
mentation, it offers everything you’d
expect from a JMS implementation, and
a bit more.

Installation of AshnaMQ is painless,
to say the least. I had it installed and was
running one of the sample programs
before you could say “Java Message
Service.” Well, perhaps a slight exaggera-
tion there. But it really is just a case of
starting the JMS server, executing the
appropriate provided script to set up the
environment, and running one of the

examples. There are a host of well-com-
mented examples to cover all the core mes-

saging options, and there are also examples
of integration with servlets, JSPs, and EJBs,

plus a midlet example.
Two of the more tangible features of

AshnaMQ that impressed me were the admin-
istration GUI and bundled documentation.
The administration tool certainly makes
AshnaMQ “easy to
administer” (as it says
on the front of the box).
There’s also a com-
mand-line interface for
the power user in you,
but the administration
GUI was my preferred
option. It enables you
to easily create/delete
topics and queues on
the server, and also
control the security
aspect of messaging
through setting up user
accounts and access
control lists.

The main highlight for
me was the “development tool” feature of the
admin GUI. It allows you to explore/play
around. From the screen shown in Figure 1, I

was able to dynamically create connections,
sessions, and, subsequently, multiple senders,
receivers, and browsers of messages for send-
ing/receiving/examining messages. Also, a facil-
ity to monitor all connections, topics, and
queues is provided. For example, you can see
how many senders/receivers there are for a par-
ticular queue.

The documentation included with the
installation provides quality manuals for the
different aspects of using AshnaMQ, from the
administration side of the fence to the pro-
gramming. It’s a rich source of examples that
includes guidance for integrating with
EJB/servlet/JSP engines.

Summary
AshnaMQ is good package. It may be lack-

ing the maturity of some of its competitors
who have been around for years, but it does
claim to be superior in some departments. It
offers extensive quality documentation with
enough examples to get you started on what-
ever aspect of the JMS package you want to
use. It’s so easy to install and use through the
admin GUI that it’s well worth down-

loading the free
Developers Edi-
tion and giving it
a bash.

Ashnasoft Corporation
39111 Paseo Padre Pkwy, Suite 213
Fremont, CA 94538
Web: www.ashnasoft.com
Phone: 510 792-6335
Fax: 510 792-6351
E-mail: info@ashnasoft.com

System Requirements
Platforms: Windows NT/2000, Solaris
2.6, 7, and 8, Linux (Red Hat 6.2 or
later)
Server: Runs best on JDK 1.3.1
Regular clients: Can run on JDK
1.2.2 and higher
Mobile clients: Runs on J2ME
Wireless Toolkit 1.0.3

Test Environment
Platform: Windows 2000
Processor: Viglen PII 700
Memory: 512MB

info
REVIEWED BY ANDREW WU andy@n-ray.com

AshnaMQ

2.0
Standard Edition

L
ab

s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

P R O D U C T R E V I E W

by Ashnasoft

FIGURE 1 AshnaMQ Administrator

85APRIL 2002

Java COM

Ashnasoft
Corporation

www.ashnasoft.com

Java COM

86 APRIL 2002

The appeal of Web portal applications
relies on how conveniently they pro-
vide a coherent and unified gateway

to dynamic content and applications that
are tailored to users’ needs and interests.
The goal of portal applications for the
enterprise is to attract users with special-
ized content and services, and then
retain these users by personalizing their
experiences. To accomplish this, exper-
tise in a variety of areas is required from
different groups that support the appli-
cation.

Java programmers can create com-
ponents using a variety of technologies
to implement the content and services
users will be provided with, while busi-
ness analysts decide how these compo-
nents should be used and accessed by
users. The issue for developers is to find

a framework that allows them to work with
implementers as seamlessly as possible.
Developers should be searching for the best
technologies to build the components that
support the Web site’s architecture, while the
business analysts figure out how these tech-
nologies can be used to support the business
objectives of the enterprise.

Happily for both developers and imple-
menters, WebLogic Portal 4.0 provides the
framework that allows both groups to coexist
harmoniously. Based on the award-winning
WebLogic Server, and positioned as the cor-
nerstone of the WebLogic Enterprise Plat-
form, the WebLogic Portal 4.0 is a framework
that provides the full functional feature set
developers expect from a maturing third-gen-
eration portal product.

Beginning with the product’s Portal Found-
ation Services, HTML and JSP developers can

BEA Systems, Inc.
2315 North First Street
San Jose, CA 95131
Web: www.bea.com
Phone: 800 817-4BEA
Fax: 408 570-8901

Test Environment
Computer: Dell Precision 340
Workstation
Processor: 1.80GHz Intel Pentium IV
processor
Hard Drive: 40GB Disk
Memory: 512MB RAM
Platform: Windows 2000 w/Service
Pack 2

Specifications
Platforms: Any platform with JDK 1.1,
1.2 support
Pricing: $57,000 per CPU, price
includes the clustered version of
WebLogic 6.1 Application Server.

info
REVIEWED BY JOHN WALKER walk@sbcglobal.net

WebLogic
Portal
4.0L

ab
s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

P R O D U C T R E V I E W

by BEA

FIGURE 2 E-Business Control Center

FIGURE 1 Demo portal

87APRIL 2002

Java COM

Compoze
Software
www.compoze.com/jdj

Receive 12 issues of Java Developer’s Journal
for only $49.99! That’s a savings of $21.89 off

the cover price. Sign up online at
www.sys-con.com or call 1 800 513-7111

and subscribe today!

DON’T MISS AN ISSUE!

Offer subject to change without notice

ANNUAL COVER PRICE

$71.88
ANNUAL NEWSSTAND RATE

$49.99

30%

YOU PAY

YOU SAVE
Off the
Newsstand Rate

Here’s what you’ll find

in every issue of JDJ:

• Exclusive coverage

J2EE J2SE J2ME

• Exclusive feature articles

• Interviews with the hottest
names in Java

• Latest Java product reviews

• Industry watch

L
ab

s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

SAVE30% off the annual
newsstand rate

Java COM

88 APRIL 2002

P R O D U C T R E V I E W

quickly create portal applications that contain portal pages made
up of portlets. Portlets can be perceived as individual windows
arranged inside portal pages that can be used to obtain access to
specialized services or content. The concept of portlets allows for
the easy integration of applications specific to the enterprise,
whether it’s B2B, B2C, or B2E. For example, legacy portals can be
integrated with portlets as well as with any existing Web services.

A developer with JSP and Java experience can easily create
the underlying JSPs that provide the templates for each portlet’s
definition. After that, layouts and skins determine the position of
the portlets on each page and their look and feel. The intelligent
design of the development framework abstracts the components
away from their implementation layer. Individuals concerned
with the implementation of the business plan can use the JSPs
built by the Java developers and the skins and layouts provided
by the HTML developers to easily organize and construct the
portals on their own.

Installation and Configuration
Before installing WebLogic Portal 4.0, WebLogic Server 6.1

should first be installed along with Service Pack 1. Make sure the
samples for WebLogic Server 6.1 are also installed; if they’re not,
WebLogic Portal 4.0 won’t start. A Cloudscape database is pro-
vided along with the samples and it’s this database that
WebLogic Portal 4.0 relies on. The installation set for WebLogic
Portal 4.0 was obtained from http://commerce.bea.com/down-
loads/commerce_servers.jsp. Be sure to consult the installation
guide before proceeding. It will inform you of the necessary file
sets needed to run the product and the order in which they are
to be installed.

If the product is being downloaded from the Web site, be sure
to download wlportal 400_with_sp1_win.exe, ebcc400_with_sp1
_win.exe, and license_wlportal400.bea. The ebcc400_with_
sp1_win.exe contains the installation files for the E-Business
Control Center. Even though it’s in a separate installation set, it’s
an integral part of the WebLogic Portal 4.0 platform. Once all the
necessary files are obtained, the installation guide is very thor-
ough in explaining all the steps to complete the installation. The
examples and documentation are excellent.

Working with WebLogic Portal 4.0
The E-Business Control Center is the application used by

business analysts and developers to organize and implement the
components used to create the features and services that make
up a portal application. The sample portal applications are a
good starting point for this investigation and easily demonstrate
all the key features the framework provides.

Starting with the “Using the E-Business Control Center
Portal Tool” documentation, I quickly created, deployed, and
tested my first portal. Following the steps provided in the docu-
mentation and using the predefined components supplied with
the samples, this process was very straightforward. Portals are
created from inside the context of a Web portal application,
which supplies easy access to all the necessary resources to sup-
port and create them. Before proceeding any further it’s impor-
tant to understand which supporting resources are provided
(see Figure 1).

When creating the portal, a business analyst need only select
the preconfigured components provided by Web designers and
Java developers. JSPs are required to render the header, footer,
navigation, and content areas of the primary portal page. Next,
which skins, layouts, portlets, and user profiles to implement
must be determined. Skins are cascading style sheets that con-
tain the look-and-feel parameters for the portal, while the lay-

We
bLo

gic
 Po

rta
l 4

.0
by

BEA

89APRIL 2002

Java COM

Apptricity
www.apptricity.com

Java COM

90 APRIL 2002

P R O D U C T R E V I E W

out determines how the portlets will be laid out on each page.
Layouts are simple HTML table layouts: each cell contains a tag
that’s used to determine the appropriate portlet to place in it
when the page is displayed. User profiles contain a list of the
attributes describing the potential users of the portal. Profile
attributes are associated with users in portal groups who are
using a separate application known as the Administration Tools
application.

These attributes can be used to determine which content
and entitlements will be provided, for instance, whether the
user qualifies for a discount on the particular products he or
she has added to the shopping cart. Entitlements dictate if the
user can take an active role in personalizing the content, lay-
out, and look and feel of the portal. Personalization is more
passive and determines what content the user will be exposed
to during the course of the session. Using a campaign compo-
nent I was able to expose a particular banner ad to a segment
of users who defined themselves as readers of a technical jour-
nal. Most of the effort required to achieve this result was
accomplished from inside the E-Business Conrol Center. I only
had to update a tag reference in a JSP file to point to my new
image file (see Figure 2).

Once all the components have been added, it must be deter-
mined how the user will be exposed to them as he or she navi-
gates through the pages. A Webflow is associated with a portal
and acts as the navigation framework for the session. Using
Webflow, a business analyst can determine which actions a user
can choose from on a page or portlet and what data processing
will take place as a consequence of that action. This is my
favorite feature. Analysts can graphically represent what the
users will experience when moving about the portal, from the
presentation page they’ll visit to the servlets and EJB used to val-
idate and process user data. No need to bother another develop-
er any time a change has to be made to the navigation frame-
work; this would happen only if a feature was added. Webflow is
represented graphically as a series of nodes that the control
flows in and out of. These nodes can represent the page the con-
trol will pass to or a Pipeline object that represents an action to
be taken. Pipeline could be an EJB that places or removes a
product from a shopping cart.

Summary
WebLogic Portal 4.0 provides an environment that not only

allows for the integration of different skillsets, but enables them
to work more efficiently. Ready-to-use examples are provided to
guide and educate developers and serve as templates for the
quick implementation of new features. The E-Business Control
Center is not only an environment that allows for the easy cre-
ation of these products, but also for their intelligent manage-
ment and implementation as well.

Product Snapshot
Target Audience: Business engineers, business analysts, Java
programmers, and application architects
Level: Beginner to advanced
Pros:
• Feature-rich product
• Plenty component templates and examples
• Easy-to-use graphical Webflow interface
Cons:
• None significant

We
bLo

gic
 Po

rta
l 4

.0
by

BEA
Receive 12 issues of XML-Journal for only
$77.99! That’s a savings of $5.89 off the

annual newsstand rate.
Sign up online at www.sys-con.com or call

1 800 513-7111 and subscribe today!

DON’T MISS AN ISSUE!

Offer subject to change without notice

ANNUAL COVER PRICE

$83.88
ANNUAL NEWSSTAND RATE

$77.99

$5.89

YOU PAY

YOU SAVE
Off the
Newsstand Rate

In April XML-J:
Deploying Web Services on WebSphere
A real-life example, using the tools and services provided

ADO.NET & ASP.NET…
…How to use them to build XML appliations

.NET Web Services: The ‘Three I’ Monster
Web services…middleware for the masses…XML miracle
tools…instant integration: just add SOAP

Middle-Tier Data Management
The middle tiers in the XDBMS architecture can
be confusing

A Pragmatic Convergence of ebXML & Web
Services
Is this a second chance for the industry?

XML Beyond Transport
Persistence for Web services

L
ab

s

SUBSCRIBE AND SAVE

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

91APRIL 2002

Java COM

JDJ Edge
www.sys-con.com

Java COM

92 APRIL 2002

As IT projects proliferate due to the
wide use of the Web for day-to-day
business and commerce, it has

become clear that the success of these proj-
ects can be attributed to proper due dili-
gence. One part of ensuring the success of
any IT project is directly related to
detailed requirements gathering. De-
veloping solid requirements documenta-
tion helps a project’s sponsor and devel-
opment teams come to a consensus on a
high-level of “absolute truths” that
define the project’s criteria for success.

Rational RequisitePro is a tool that
helps in the often painstaking task of
gathering and documenting require-
ments. RequisitePro accomplishes this
by incorporating an environment in
which members of any development
team can access and update project
goals and requirements.

Overview
In a nutshell, the core of

RequisitePro is a tightly integrated
database and application that works
closely with Microsoft Word. This appli-
cation enables users to update require-
ments, either within the application
environment or by using the toolbar and
menu options in Microsoft Word that
RequisitePro installs. RequisitePro offers
the following major features:
• Full traceability of ever-changing

requirements
• Prioritization of requirements
• Templates to identify and manage var-

ious types of requirements

• An environment that supports hierarchical
relationships among requirements

• A Web-based system for viewing and edit-
ing requirements

RequisitePro also enables users to view
and manage files via a Web interface. This fea-
ture is an important component in a team’s
ability to access the core rules and specifica-
tions governing the development of a system.
The RequisitePro license comes with a Win-
dows server and a Web-based component to
provide Web access. The product also ships
with a Quick Tour as well as a more in-depth
tutorial. As a side note, there’s full integration
between RequisitePro and other Rational
development, modeling, and process soft-
ware, creating a suite of products that covers
the full life cycle of software development.

Working with RequisitePro
Installing RequisitePro was relatively easy,

although I did receive an error message saying
the ODBC driver couldn’t be properly config-
ured. This error didn’t seem to interfere with
the operation of the product and may have
been due to a nuance of the specific configu-
ration of my system. I installed the complete
product to take advantage of the Quick Tour
and the included tutorial. The entire installa-
tion required about 100MB+ of disk space.

The RequisitePro window provides an
environment that’s logical and sensible for the
maintenance of requirements. There’s a tree
view on the left side of the window and the
details of the tree are represented on the right
(see Figure 1). The tree-view items on the left
expand and contract depending on the item

Rational Software Corporation
18880 Homestead Rd.
Cupertino, CA 95014
Phone: 800 728-1212
Web: www.rational.com

Test Environment:
Computer: Gateway Solo 9150
Processor: Pentium III 333MHz
Memory:128MB RAM
Platform: Windows NT Workstation
4.0 (Service Pack 6)

Specifications:
Platforms: Windows NT 4.0, XP,
2000, 95, 98, or Millennium Edition
Pricing: Rational RequisitePro
Windows Server, Rational
RequisiteWeb, and Rational
RequisitePro are included in the
Rational RequisitePro package for
$2,034 for a node-locked license with
one year of support.

info
REVIEWED BY SCOTT SILVERMAN scott.silverman@catavo.com

L
ab

s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

P R O D U C T R E V I E W

by Rational Software Corporation

Re
qui

site
Pro

93APRIL 2002

Java COM

Web Services
Edge

www.sys-con.com

Java COM

94 APRIL 2002

P R O D U C T R E V I E W

that’s clicked. Additions and edits to requirements can be added
directly to the proper area in the application window or to the
specific Microsoft Word requirements document. When adding
items to the Word document, these items automatically update
the RequisitePro tree in the application when saved. The win-
dows are resizable, and there’s a toolbar and menus to execute
the necessary commands.

When using the “traceability matrix” feature, the left side of
the menu can represent a grid of the feature’s requirements
along the top and a list of traced use cases below and to the left
(see Figure 2). This was my preferred method to view linked
requirements that are dependent on each other. You can also use
a “list” type view that has a list of the requirements down the left-
hand side, including a numeric reference to the linked require-
ment. RequisitePro supports hierarchical requirements that
allow you to view all parent and child relationships for require-
ments as well as inherent dependencies.

RequisitePro comes out of the box with some great tem-
plates for use case–driven, supplemental, and feature-based
requirements. A very important feature is the ability to cus-
tomize these templates with a document and separate identi-
fier of your own. This allows you to incorporate the
RequisitePro product into your own process and methodology.

FIGURE 1 RequisitePro window

FIGURE 2 Traceability matrix

Re
qui

site
Pro

 by
Ra

tio
nal

 So
ftw

are
 Co

rpo
rat

ion

In April WBT:
More Than an Overnight Success
Federal Express developed the first wireless package-
tracking system in the industry over 20 years ago.

It’s a Small World
And getting smaller at Disney World, where wireless LANs
are employed throughout the giant park to aid employ-
ees and enhance visitors’ experiences.

Will SPRINT’S Strategy Succeed?
The number 4 wireless carrier seems to be rolling the
dice with heavy bets on Java.

Wireless Java is Coming
With the arrival of wireless Java, users are finally able to
add exciting new applications to their devices.

Receive 12 issues of Wireless Business &
Technology for only $49.99! That’s a

savings of 30% off the cover price. Sign up online
at www.sys-con.com or call 1 800 513-7111

and subscribe today!

DON’T MISS AN ISSUE!

Offer subject to change without notice

ANNUAL COVER PRICE

$71.88
ANNUAL NEWSSTAND RATE

$49.99

30%

YOU PAY

YOU SAVE
Off the
Newsstand Rate

L
ab

s

SAVE30% off the annual
newsstand rate

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

Simplex
Knowledge
Company

skc.com

95APRIL 2002

Java COM

Java COM

96 APRIL 2002

P R O D U C T R E V I E W

The real benefit of this tool lies in the integration of database-
driven requirements tracking and the ability to work in a
familiar environment such as Microsoft Word. In addition,
project team members can gain access to the documentation
and team members can add, edit, or delete requirements,
making this product a good tool to add to a mid- to large-scale
project.

As for speed, RequisitePro seemed to respond well on my test
platform, as long as I didn’t try to run too many other applica-
tions simultaneously. I usually try to keep open programs to a
minimum, as the system I work on is not quite state-of-the-art. I
noticed a very minor lag between the update of the RequisitePro
window and the Microsoft Word document. With systems above
the recommended minimum requirements, I can see how the
performance would be excellent.

Summary
Rational RequisitePro does a great job of tracking, editing,

and generally making project requirements accessible. The inte-
gration with most standard databases and close-to-seamless
updating in Microsoft Word makes RequisitePro a helpful addi-
tion to the arsenal of project management and business analysis
tools. The interface is easy to use and can be learned quickly. The
Web-based interface makes sharing valuable project informa-
tion simple and straightforward. The ability to customize the
included templates or create and reference your own is an excel-
lent feature. Any development team working on a mid- to large-
scale project will save time and money using RequisitePro’s fea-
tures.

Product Snapshot

Target Audience: Program managers, project managers,

business analysts, and project team members

Level: Entry-level business analysis skills and basic to

intermediate Microsoft Word skills

Pros:

• Integrated database functionality

• Traceable requirement relationships

• Good tutorial

• Excellent customizable template structure

• Supports hierarchical requirements and access by the

entire project team

Cons:

• Requires third-party database program

• May be overkill for some smaller size projects

Re
qui

site
Pro

 by
Ra

tio
nal

 So
ftw

are
 Co

rpo
rat

ion

In April WSJ:
Using Web Services with J2EE
Moving into a technology-independent world

Asynchronous Web Services
Deployment based on JMS that extends SOAP-over-HTTP

Dynamically Converting Existing
Java Code to a Web Service
A robust and comprehensive framework for delivering
Web services

Web Services Over P2P Networks
The technology is ready for an interesting intersection

Knowing the Score - Web Services
and Business Processes
The promise of a new era in e-commerce

Receive 12 issues of Web Services Journal
for only $69.99! That’s a savings of

$13.89 off the annual newsstand rate.
Sign up online at www.sys-con.com or call

1 800 513-7111 and subscribe today!

DON’T MISS AN ISSUE!

Offer subject to change without notice

ANNUAL COVER PRICE

$83.88
ANNUAL NEWSSTAND RATE

$69.99

$13.89

YOU PAY

YOU SAVE
Off the
Newsstand Rate

L
ab

s

SUBSCRIBE AND SAVE

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

Dynamic Buyer
Incorporated

www.ibm.com/smallbusiness/dynamicbuyer

97APRIL 2002

Java COM

Java COM

98 APRIL 2002

J2
SE

H
om

e
J2

E
E

J2
M

E
R O M T H E E D I T O RI

The
re

Ma
y B

eT
rou

ble
 Ah

ead
…

–continued from page 5

first ones to complain if I buried my head in the
sand and just ignored the threat. We have to look
at this together and come up with a strategy that
will enable us to effectively take on C#. We’ll be
getting a lot of heat from all over and we need to be
armed with the information and prepared to go back
to the drawing board and reeducate the masses. Sadly,
they are being led a merry dance by Pied Piper Gates.

Allow me to cite you an example of such blind igno-
rance and if this doesn’t scare you, then I don’t know what will.
I was recently involved with the Scottish government, dis-
cussing technology and what have you, where naturally the
topic of Microsoft was high on the agenda. Excusing the fact
that these people took a certain pride in believing they knew
what was going on and loved name-dropping, the phrase that
caught me off guard was the following: “Java? No one is doing
that now. Microsoft is no longer supporting it.”

Wow! Talk about a major miscommunication. And this
from someone who controls budgets for the technology sector
in Scotland. Ironically, I believe he really thinks he has his fin-
ger on the pulse of technology. It’s sheer ignorance like this
that scares me the most. Microsoft has successfully planted
and nurtured the seed in people’s heads that just because it
isn’t supporting Java in Windows XP, Java is dead. I have to
admit I was taken aback and quite flabbergasted when I heard
that retort. I really didn’t know where to go with that. So much
background information was obviously missing that I wasn’t

too sure if I would come over as
patronizing and whether, ultimately, they would understand.

Sadly, this is not an isolated incident. Ever since I started
writing about this topic in my editorials, I’ve been hearing sto-
ries from you regarding similar misconceptions and it scares
me. We have a beautiful language here in Java; it has achieved
industry-wide support and is pushing forward with great
velocity. What can we do to support it?

You do realize we need an anthem. All great causes have an
anthem. Something for us to get behind and sing!!!
Suggestions gratefully received. We need a Java song!

Until next month…

FREE
E-Newsletters
SIGN UP
TODAY!Go to www.SYS-CON.com

The most innovative products, new releases, interviews, industry developments, and
plenty of solid i-technology news can be found in SYS-CON Media’s Industry Newsletters.
Targeted to meet your professional needs, each e-mail is informative, insightful, and to the
point. They’re free, and your subscription is just a mouse-click away at www.sys-con.com.

SELECT THE INDUSTRY NEW
SLETTERS THAT M

ATCH
YOUR NEEDS! CHOOSE ONE OR TRY THEM

 ALL!

Exclusively from the World’s Leading i-Technology Publisher

99APRIL 2002

Java COM

Java Developer’s
Journal
www.sys-con.com

Java COM

100 APRIL 2002

Sunrecently announced the general availability of
JDK 1.4. JDJ ’s editor-in-chief, Alan Williamson, had the opportu-
nity to sit down and talk with Sherman Dickman, senior product
manager for the Java platform. Before the meeting Alan invited
the readers of JDJ to put together some questions for Sherman.
The following is a transcript of that meeting.

<alan>: What are the main features of this new JDK release?
<sherman>: Some of the features that stand out are 64-bit sup-
port, new I/O, XML support, Kerberos single sign-on capabilities,
a reengineered Java technology-enabled 2D graphics engine,
Java Web Start software, logging, assertions, IPv6, and a lot
more. There’s a great overview of the new features in the Java 2
Platform, Standard Edition (J2SE) 1.4 on our Web site at
http://java.sun.com/j2se/1.4/.

<alan>: How many classes make up this JDK?
<sherman>: There are just over 11,000 classes in J2SE version
1.4. Note that this includes the implementation and not just the
APIs, and does not include Java Web Start software.

<alan>: What has been the most requested feature you’ve
addressed in this release?
<sherman>: In terms of the number of requests, “assertions” and
“mouse-wheel support” were ranked very high when the feature
list was first drafted, in the fall of 1999.

<alan>: The browser world is still catching up with Swing and
developers still can’t develop Swing apps to run within a
browser without invoking a major download. What is Sun
doing to encourage the browsers to take the leap and bridge
the gap?
<sherman>: Actually, Netscape and Opera provide excellent sup-
port for J2SE. In addition, the J2SE platform is bundled with most
major operating systems including Linux, Mac OS X, and the
Solaris Operating Environment. There’s one browser/OS vendor
in particular that has yet to ship the J2SE platform, so we’re pro-
viding improvements to the Java plug-in software that enables
users to run browser applets on the J2SE platform. The key
developer advantage of these improvements is that existing

applets can be run without the need to modify <APPLET> tags in
HTML pages.

<alan>: Why was the release of 1.4 delayed? What was caus-
ing the major issue?
<sherman>: We originally planned to release the J2SE 1.4 plat-
form at the end of 2001, however, there were a few things that
contributed to our February 13 release date. A couple of Java
Specification Requests needed to complete the full Java
Community Process cycle. We also wanted to ensure that
there was sufficient time to address some of the customer
feedback we received from our betas, in addition to providing a
bit more bake time into the release to satisfy our reliability
goals.

<alan>: Why did it take so long to address the Swing per-
formance and underlying graphics redraw problems?
<sherman>: J2SE version 1.2 was the first major release to intro-
duce the new Java 2D package, which serves as the core ren-
dering engine for J2SE. The focus for this first Java 2 release was
feature completeness, and later releases were dedicated to tun-
ing the new graphics system. We identified a lot of tuning oppor-
tunities, and in the interests of shipping the 1.3 release in a time-
ly fashion, we decided to spread this work across the 1.3 and 1.4
releases. So the performance of Swing for each release has
steadily improved, and we anticipate yet another boost in the 1.5
time frame.

<alan>: How’s float and double arithmetic performance rela-
tive to JDK 1.3?
<sherman>: I’m not aware of special work to improve float/double
performance in 1.4, although bounds-check elimination really
helps for code that’s floating-point intensive. It’s probably a bit
faster, but not something we track independently.

<alan>: How about a performance comparison for different
sections of the JDK versus previous JDKs.
<sherman>: There’s a great 1.4 performance guide at
http://java.sun.com/j2se/1.4/performance.guide.html, and I’d like
to encourage everyone to check it out. It goes into a lot of detail
and serves as a great resource for anyone interested in evaluat-
ing the performance improvements from 1.3 to 1.4.

JDK 1.4
JDJ Readers Question Sun Regarding the Latest JDK

AN INTERVIEW WITH SHERMAN DICKMAN BY ALAN WILLIAMSON
In

te
rv

ie
w

J2
SE

H
om

e
J2

E
E

J2
M

E

101APRIL 2002

Java COM

Web Services
Journal
www.sys-con.com

Java COM

102 APRIL 2002

<alan>: What are some of improvements that were done to
the compiler (such as branch prediction)?
<sherman>: There are two HotSpot virtual machine compilers in
the J2SE platform – one tuned for clients and the other for
servers. Improvements in the client compiler include better local
code quality, improved inlining, providing significant speedups to
most Java technology-enabled programs, and optimized per-
formance for new I/O. Improvements in the server compiler
include a new deterministic inlining mechanism, array bounds
check optimization, new loop optimizations, and a substantial
effort toward stability.

<alan>: Does Sun ever plan to remove any APIs that have
been deprecated since JDK 1.0/1.1?
<sherman>: Sun currently does not have plans to remove depre-
cated APIs.

<alan>: In general, what are Sun’s intentions regarding dep-
recated APIs?

<sherman>: Deprecation is advice to developers that some APIs
have been replaced with better ones. It doesn’t mean the old API
is going away. Going forward we intend to make very limited use
of additional deprecations.

<alan>: Why were assertions added as a change to the lan-
guage instead of an API?
<sherman>: A library approach would have worked, but it would
have been either ugly (requiring an “if” statement for each asser-
tion) or inefficient (evaluating the asserted condition even if
assertions were disabled). Faced with these deficiencies, we felt
that developers were more likely to prefer the addition of asser-
tions into the language itself.

<alan>: Why can’t they make Swing more lightweight in terms
of being able to utilize a single component without having to
drag the entire API along?
<sherman>: Object-oriented systems like Java emphasize reuse
through specialization. Component systems like JavaBeans
focus on reuse through configurability and delegation. Both of
these approaches have a tendency to produce systems with
many highly interdependent general-purpose parts and Swing is
no exception. One unfortunate side effect of this is that startup
time and the working set grow as the number of classes loaded
and used grows. We balance this growth by limiting dependen-
cies that cross functional boundaries, sometimes even at the
expense of reuse. This is an ongoing process and it’s the primary
focus of the Swing implementation work that’s underway now.

<alan>: Are there any plans for a Java 2.0?
<sherman>: By Java 2.0, do you mean a Java 3 platform?

The development goals behind the J2SE platform are to pro-
vide consistent and compatible releases of J2SE technology over
time. We recently shipped the J2SE 1.4 platform, and are begin-

ning the planning process for version 1.5, which will release
approximately 18 months from now.

The shift from the Java 1.x–based platform to the Java 2
Platform, Standard Edition in 1998 was quite substantial, but the
platform is maturing quite nicely with our current release model.
There are currently no plans for a Java 3 Platform, Standard
Edition in the near future.

<alan>: Which, if any, of the JAX Pack APIs will be moved to
the JDK? What is future thinking about the JDK and Web
services APIs? JAX Pack forever or will some “sneak” into
the JDK?
<sherman>: Great question! XML parsing and XSLT support were
included in the J2SE 1.4 release. Since all J2SE releases now
participate in the Java Community Process, it will really be up to
the expert group for J2SE version 1.5 to determine which XML
APIs should be included as part of the core J2SE platform. In the
meantime, additional XML APIs will ship via the Java XML Pack.

<alan>: Is the XP plug-in part of JRE 1.4?
<sherman>: Yes, it is, and will be a part of all J2SE technology
releases moving forward.

<alan>: When they started working on the regular expres-
sions package for 1.4, did they look at other regular expres-
sions packages? Apache has the ORO package, a very nice
package, in my opinion.
<sherman>: Yes, we evaluated other regular expressions pack-
ages to get a feel for what functionality a good regex package
should offer. The goal was go with a syntax similar to the most
popular regex language out there, Perl. Our design profited from
the efforts of the ORO project, as well as other earlier efforts.

<alan>: When will Sun be updating the community edition of
Forte for JDK 1.4?
<sherman>: Today! The Forte for Java Community Edition IDE
can be downloaded with J2SE 1.4 from our Web site at
http://java.sun.com/j2se/1.4/download.html.

<alan>: With respect to 1.5, is there anything that should
have been part of 1.4 that has now been pushed back to
Tiger (1.5)?
<sherman>: Yes. In the interests of shipping J2SE 1.4 on time with
great performance and reliability, we had to make some tough
decisions and defer a few features to the 1.5 release. This includ-
ed the JPDA back-end expression evaluation, a character con-
verter generator tool, concise array literals, socket factory sup-
port, and a few features from new I/O, including scanning and
formatting and an improved file system interface.

<alan>: Sherman, on behalf of our readers and myself, I
would like to thank you for taking the time to answer our
questions. We’ll be back when you announce 1.5!

“There’s one browser/OS vendor in particular that has yet
to ship the J2SE platform, so we’re providing

improvements to the Java plug-in software that enables
users to run browser applets on the J2SE platform”In

te
rv

ie
w

J2
SE

H
om

e
J2

E
E

J2
M

E

Order Online and Save 10% or More!
www.JDJSTORE.com

OFFER SUBJECT TO CHANGE WITHOUT NOTICE

CFDJ The Complete Works
Reg $79.99

Buy Online
Only $7199
Buy Online
Only $7199

Web Services Resource CD
Reg $119

Buy Online
Only $79

Buy Online
Only $79

JDJ The Complete Works
Reg $119.99

Buy Online
Only$7199

The most complete library
of exclusive CFDJ articles!

Check out over 250 articles
covering topics such as…

Custom Tags, ColdFusion and
Java, Finding a Web Host,
Conference Reports, Server
Stability, Site Performance,

SYS-CON Radio, ColdFusion
Tips and Techniques, Using XML

and XSLT with ColdFusion,
Fusebox, Building E-Business

Apps, Application Frameworks,
Error Handling, and more!

The most complete
library of exclusive WSJ &
XML-J articles on one CD!

Check out over 400 articles
covering topics such as…

XML in Transit, XML Industry Insider,
UML, Integration, WSDL, VoiceXML,
XML & E-Commerce, Beginning Web

Services, Web Services Tips &
Techniques, Ubiquitous Computing,

Information Management, XML Script,
UDDI, .NET, Objects & XML, XML

Middleware, and much more!

The most complete
library of exclusive

JDJ articles on one CD!

Check out over 500 articles
covering topics such as...

Java Fundamentals, Advanced Java,
Object Orientation, Java Applets,
AWT, Swing, Threads, JavaBeans,

Java & Databases, Security,
Client/Server, Java Servlets, Server Side,
Enterprise Java, Java Native Interface,

CORBA, Libraries, Embedded Java, XML,
Wireless, IDEs, and much more!

Buy Online
Only$7199

4JDJ, WSJ & XML-J,
CFDJ, & CFA

CFA The Complete Works
Reg $79.99

Buy Online
Only$7199
Buy Online
Only$7199

The most complete library
of exclusive CFA articles!

Check out over 200 articles
covering topics such as...

E-Commerce, Interviews, Custom
Tags, Fusebox, Editorials,

Databases, News, CF & Java,
CFBasics, Reviews, Scalability,
Enterprise CF, CF Applications,

CF Tips & Techniques,
Programming Techniques,

Forms, Object-Oriented CF,WDDX,
Upgrading CF, Programming Tips,

Wireless,Verity, Source Code, and more!

FOR
ONLY$22999

COLLECT

ALL

SPECIAL
OFFER:

Buy CFDJ & CFA

The Complete Works

For Only

$12999

Missed an issue?
We’ve got ’em all for you on CD!

Exclusive: Excerpts from JavaDevelopersJournal.com

‘WE CAN’T LET JAVA GO THE WAY OF WORDPERFECT’
SAYS JAVALOBBY FOUNDER

MICROSOFT'S $200,000,000 BUDGET FOR .NET marketing
requires immediate remedial action by everyone in Javaland,
Rick Ross insists

He has said it before. He will doubtless say it again.
JavaLobby founder Rick Ross is circulating his most urgent rally-
ing cry yet to those who would preserve Java technology in the
enterprise and fight off the $200,000,000 marketing campaign
that Microsoft pledged to throw behind its .NET Framework,
now that it has officially launched Visual Studio .NET. “Make no

mistake,” says Ross in a newsletter to JavaLobby members, “this
massive campaign is aimed at persuading your peers and man-
agers to choose .NET instead of Java. It’s aimed squarely at you,
your job, and the technology platform in which you have invest-
ed time and energy to become an expert.”

Ross’s argument is that Java developers “probably have
something to lose,” and “may even have a lot to lose.”

“Bill Gates and Steve Ballmer have repeatedly stated that
they have bet their whole company on .NET,” Ross warns, “so
you can be absolutely sure they have a lot to lose. Expect them
to compete ruthlessly, and remember that they’ve established a
track record of being willing to play dirty.”

JDJ is not the place to comment on that latter allegation, but
looking at the technological side of things, Ross, of course, has a
point. When Microsoft launched Visual Studio .NET at VSLive!
on February 13, there were simultaneous events around the
globe. With its own Java-like OO language, C# (C Sharp), and
aimed at the preexisting – and huge – community of somewhere
between 6–8 million Visual Basic developers, VS.NET is regarded
by many industry pundits as evidence that Microsoft has com-
pletely rewritten all the rules of how Windows software is built
and deployed.

With corporate use of Windows as an enterprise computing
platform already on the rise, the .NET Framework is arguably on
course to become pervasive over the next few years, and it’s
Ross’s view that Internet technology professionals everywhere
will need to know the respective strengths of both platforms in
order to advise clients objectively on why J2EE beats .NET for
both business and technological reasons.

“We can start by focusing on the fundamentals,” Ross
explains. Then, repeating a point he has made again and again
in recent months: “most Java developers comprehend instinc-
tively how important it is to have viable alternatives to the offer-

ings of a monopolist.”
“We understand intuitively,” he adds combatively, “that

using .NET leads directly to single vendor lock-in and every-
thing that implies, especially when the vendor is Microsoft. If we
can just be clear, articulate, and pleasant while explaining this to
people who may be less passionate or knowledgeable than our-
selves, then we will be a solid front line of defense against
Microsoft’s $200,000,000 campaign to sway public opinion in
their favor. It’s a simple beginning, but a powerful one.”

“This is just a beginning,” Ross concludes. “We can’t let Java
go the way of WordPerfect!"”

What do you think? How can Sun best make the Java run-
time ubiquitous? How can Javaland best resist the Microsoft
$200,000,000 marketing push? Is it time now perhaps for Sun to
open source the Java implementation, maybe under GPL/SCL?
What more should and could Sun do to boost Java? How much is
.NET a threat to Java – is it really life or death? Or will the future
be interoperable on the Web services model? Can Java and .NET
in that case coexist peacefully? To add your comments, go to
www.sys-con.com/java/articlenews.cfm?id=1333 .

by JDJ News Desk

E
xc

lu
si

ve

J2
SE

H
om

e
J2

E
E

J2
M

E

Internet technology professionals will need to know the respective
strengths of both platforms in order to advise clients objectively“ ”

RECEIVE $15
0

DISCOUNT OFF F
ULL C

ONFERENCE

WEB SERVICES EDGE REGISTRATION

by Jeremy Geelan

JAVA AND .NET Now Competing Head-to-Head for the Hearts
and Minds of Enterprise Developers. “Large corporations should
shy away from .NET” say some; “Why shouldn’t developers trust
.NET in the enterprise?” ask others.

�JavaLobby founder Rick Ross’s cry to Java developers every-
where – “We can’t let Java go the way of WordPerfect!” – clearly
struck a note with those developers worldwide who share his
concern at the impact .NET will or won’t have on the continued
success of Java in the future, now that Microsoft Corp has
begun to spend the massive $200,000,000 budget it has allocat-
ed to the marketing of its new framework.

Thoughtful and considered responses to Ross’s call to
action have been coming to us from developers far and wide.
Some are critical not so much of Microsoft as of Sun
Microsystems itself, who many feel may be getting its tactics
completely wrong.

�“If only Sun would loosen its grip on Java standards and cer-
tify open source application servers like JBoss,” comments Sam
Johnston from New South Wales in Australia, “then perhaps we
could compete, but so long as we’re paying hundreds of thou-
sands of dollars for app and database servers before we even
start developing anything, how are we ever meant to get any-
where? A single Enterprise IDE license alone absorbs a large
chunk of smaller projects’ budgets.”

�B.J. Schreib feels the same way. “Open it!” he exclaims. “If
Java is ever going to have a chance in hell of killing .NET, then
Sun has to open up Java. ...by doing so, Sun stands to gain
more credibility in the developer community and, as we’ve
seen with Linux, allows (but does not assure) the creation of a
developer base that can potentially eclipse the speed at which
the dinosaur in Redmond can move.”

�Jonathan Ginter agrees. “If Sun is going to withstand this
attack,” he says, “perhaps its best strategy would be to finally
submit Java as an open source project under strict licensing. I
feel that this would merely extend the Java Community Process
concept that’s already in place. Moreover, it would cripple

Microsoft’s ability to make an issue of Sun’s ownership of Java
and strengthen the Java community’s claims of vendor lock-in
for C#.”

“If Sun feels that this would be too much of a free-for-all
with little or no quality control,” he continues, “then how about
finding a way to create joint ownership of the Java standard: a
collective approach that could include Sun, IBM, HP, etc?”

�Scott Smith can’t understand what all the fuss is about. “Why
so paranoid?” he asks. “I don’t understand the war mentality.
Competition is good. I develop exclusively in Java at this time,
but three years ago I was a C++ programmer. Three years from
now I may be writing exclusively in C#. I’ll go where the market
demands.”

But even Smith thinks opening up Java might help in resist-
ing .NET. “If Sun is so arrogant and short-sighted as to get
greedy with Java, they will lose. Sun should make Java open
and give open source efforts, like JBoss, certification. The likes
of BEA will have to suffer for Java to survive. It’s a hard choice,
but that’s what it comes down to. The least greedy will survive.
And, unfortunately, Microsoft can afford to be very ‘altruistic’
in the short term in order to ensure long-term success.” (Java
developer Doug Harris loves the idea of Microsoft being altru-
istic. “Is this like a Scout helping a lady across the street,
because it’s darker and easier to rob her on the other side?” he
asks.)

�Mike Wong is more, shall we say, open-minded. Commenting
from the Philippines, he says: “Microsoft’s strengths lie in the
marketing, tech support, and continuous improvement of the
products it sells (or bundles). Although I really appreciated and
admired the way Java architects created Java, it must...com-
pete. You can’t just rely on the beauty of the language in order
to rise above the [.NET] challenge.”

�Finally, and this remains the alpha and omega of Java’s con-
tinuing success perhaps, Michael Dean reminds us all of Java’s
tried and true strength, based on his daily, personal experi-
ence: “I write/compile/test Java on NT.4 in VAJ, FTP to the
S/390 (z/OS) and run it without change...that’s portability!
Where have we ever seen that from MS?”

�Amen. And definitely not, we hope, RIP!

JDJ Feedback Special Report

SOLD OUT!

SOLD OUT!

AIMED AT THE JAVA DEVELOPER COMMUNITY AND DESIGNED TO EQUIP ATTENDEES WITH ALL THE TOOLS AND INFORMATION TO BEGIN IMMEDIATELY
CREATING, DEPLOYING, AND USING WEB SERVICES.

EXPERT PRACTITIONERS TAKING AN APPLIED APPROACH WILL PRESENT TOPICS INCLUDING BASE TECHNOLOGIES SUCH AS SOAP, WSDL, UDDI, AND XML,
AND MORE ADVANCED ISSUES SUCH AS SECURITY, EXPOSING LEGACY SYSTEMS, AND REMOTE REFERENCES.

Jump-start your Web Services knowledge.
Get ready for Web Services Edge East and West!

PRESENTERS...
Anne Thomas Manes, Systinet CTO, is a widely recognized industry
expert who has published extensively on Web Services and service-based comput-
ing. She is a participant on standards development efforts at JCP, W3C, and UDDI,
and was recently listed among the Power 100 IT Leaders by Enterprise Systems,
which praised her “uncanny ability to apply technology to create new solutions.”

Zdenek Svoboda is a Lead Architect for Systinet’s WASP Web
Services platform and has worked for various companies designing and developing
Java and XML-based products.

BOSTON, MA (Boston Marriott Newton)JANUARY 29
WASHINGTON, DC (Tysons Corner Marriott)FEBRUARY 26
NEW YORK, NY (Doubletree Guest Suites).....................APRIL 19
SAN FRANCISCO, CA (Marriott San Francisco)MAY 13
REGISTER WITH A COLLEAGUE AND SAVE 15% OFF THE $495 REGISTRATION FEE.

Register at www.sys-con.com or Call 201 802-3069
EXCLUSIVELY SPONSORED BY

SOLD OUT!

SOLD OUT!

NEW DATE!

E T T E R S T O T H E E D I T O R

Java COM

106 APRIL 2002

The Pros and Cons of
Certification

To Be or Not To Be
Certified…” (Vol.

7, issue 2) by Keith
Brown is a great edito-
rial.

Finally someone is
standing up and say-
ing what the entire
community is think-
ing: certification is
just another money-
making route for Sun.

Believe me, I’ve
come up against a lot
of people who wear
their certification badge with pride, but
you wouldn’t want them anywhere near
your project.

Certification is just a memory game,
big deal. So if you’re certified, well
done...be proud of yourself...you’ve
financed Sun a little bit more...you’ve
“bought” an extra line for your CV!!!!

Henry Roswell
runrig10@hotmail.com

Ihave some credibility problems with
Keith Brown. I take his opinions with a

grain of salt, since he “has been involved
with Java for many
years” and yet still
needed to take a
five-day program-
ming course from
Sun, and he con-
siders “actually
writing code” a
“necessary evil”
for preparing for
this exam. I am
studying for this
exam to gain a
better understand-
ing of Java funda-
mentals; this
process has

already benefited me a lot, and I haven’t
even taken the actual test yet!

Rob Ross
via e-mail

Editor’s Note: I believe you’ve misread the
editorial. Keith Brown believes the pro-
grammer’s exam is a necessary evil, not
writing code.

Apples to Oranges

Alan Williamson is indeed correct
about the lack of .NET developers

on the street
(“Scandalous
Propaganda,” [Vol. 7,
issue 1]). It’s premature
for anyone to insist that
.NET will ultimately be
faster, especially for the
necessary heavy lifting
that’s done in the middle
tiers. Like COM and
COM+, .NET is not only
CLR, C#, and J#, it’s a
host of services as well.
It’s these additional ser-
vices, like MTS, MSMQ,
BixTalk, etc., that will
make up solutions based

on MS technology...and there ain’t no
real data yet.

All of this “speed” is attributed to
some demos that are really focused on
the CLR engine performance. MS is no
stranger to strong VMs. In fact, if I’m not
mistaken, they had the fastest JVM. So it’s
little wonder that a .NET application will
cruise along just fine. However, their sur-
rogate app server technology (MTS and
COM+), while flashy and “easy to use,”
leaves much to be desired and is not
something that will scale up and host
millions of objects. As an MCSD and pre-
vious user, I speak from lessons learned.

Patrick Mulligan
patrick.mulligan@iona.com

A Great Review

Getting Focus()ed – and a Quick
JavaScript Lesson,” by Charles

Arehart (Vol. 7, issue 1) was a good
review of basic and useful concepts.

Satihs
bbabu@baan.com

The Benefits of DCG

Dynamic Code Generation” by
Norman Richards (Vol. 7, issue 2) is

a great overall intro to the benefits and
simple techniques of dynamic code gen-
eration.

Brian Maso
brian@blumenfeld-maso.com

Not a “Reel” Boss

How’s the Boss” by Bill Baloglu and
Billy Palmieri (Vol. 7, issue 2) was a

letdown after such a good topic selec-
tion. I’ve come across numerous differ-
ent and eccentric managers with their
own sets of problems. The classification
given by the authors on the types of

managers seems more like a story of a
reel life rather than real life.

Ashish
aashish_agarwal@mailcity.com

Bill Baloglu and Billy Palmieri’s col-
umn was a fine read – a great blend

of psychology, staffing experience, wit,
and wisdom.

Larry Mundo
Elle Mundo@aol.com

L
et

te
rs

J2
SE

H
om

e
J2

E
E

J2
M

E

“

“

“

“

Go
Online
and
Subscribe
Today!

Go
Online
and
Subscribe
Today!

FORFASTFORFASTDELIVERY Helping
you enable
inter-company
collaboration
on a global scale

• Product Reviews
• Case Studies

• Tips, Tricks
and more!

INTRODUCTORY OFFER

SAVE $31 *

HURRY, DON’T DELAY! OFFER SUBJECT TO CHANGE W
ITHOUT NOTICE

SPECIAL

WebLogicDevelopersJournal.com
SYS-CON Media, the world’s leading publisher of i-technology magazines for developers, software architects, and e-commerce
professionals, brings you the most comprehensive coverage of WebLogic. *Only $149 for 1 year (12 issues) regular price $180.

subscribe Now!
Now in More than 5,000 bookstores worldwideNow in More than 5,000 bookstores worldwide

107APRIL 2002

Java COM

Java COM

108 APRIL 2002

JAVANEWS>

�InetSoft Releases Version 4.3 of
Style Report
(Piscataway, NJ) – InetSoft Technology
Corporation has released version 4.3 of
Style Report. New features include a
Web-based report designer, a full suite of
debug/development tools, and reusable
report components, allowing for easier
report creation, easier deployment, and
lower maintenance.
www.inetsoft.com

�ReportMill5 Brings PDF and Flash to
Java Web Apps
(Dallas) – ReportMill Software, Inc., has
announced the general availability of
ReportMill 5, a developer tool providing
dynamic PDF and Flash Web pages and
reports for Web applications. The new
version is written entirely in Java and
runs on all major platforms with support
for all Java-based Web application
servers, including those from BEA, IBM,
Oracle, Sun, and Apple.
http://reportmill.com/webstart

�ICS Releases Version 3.40 of Kronos
Enterprise Scheduler
(Paramus, NJ) – Indus Consultancy
Services (ICS) has announced the latest
in a series of improvements to Kronos
Enterprise Scheduler, a full-featured job-
scheduling system written for the J2EE
environment.

The new release fixes some minor bugs,
and adds a new security feature to control
user access to jobs, tasks, and schedules. A
new environment setting allows the
Kronos Enterprise Scheduler administrator

to restrict users to seeing only those items
they’ve created. Administrators still have
full access to all items.
www.indcon.com

�Slangsoft Licenses iTID
Platform to SavaJe
(Boston) – SavaJe is integrating
Slangsoft’s intelligent text input and dis-
play platform with the SavaJe XE operat-
ing system. Device manufacturers
(OEMs) can rely on the iTID-enabled
SavaJe XE to create information appli-
ances that meet today’s demand for
portable computing with fast, intuitive
text input and scalable text display for
up to 52 languages.
www.savaje.com

�Rational Announces Support for
BEA WebLogic Server 6.1
(Lexington, MA) – Rational Software has
announced support for BEA WebLogic
Server 6.1 with Rational XDE Professional:
Java Platform Edition and a new BEA
WebLogic Plug-In for the Rational Unified
Process, simplifying and accelerating the
development and deployment of Java and

J2EE applications.
The BEA WebLogic

Plug-In is available as a
free download at the
RUP Exchange on the
Rational Developer
Network (www.ration-
al.net).
www.rational.com

eXcelon Announces
Javlin 1.2
(Burlington, MA) –
eXcelon Corporation has

announced Javlin 1.2, a
new version of its middle-tier J2EE data
cache manager. The latest release features

new functionality that
enables tighter integration

with application server environments,
including BEA WebLogic Server. In addi-
tion, Javlin is supported on all WebLogic
Server platforms, including Windows,
Solaris, Linux, and HP-UX. Javlin 1.2 also
now supports the JDK 1.3.
www.exceloncorp.com

�Versata/ILOG Collaborate on
Business Logic Initiative
(Oakland, CA) – Versata Inc. has
announced an agreement with ILOG,
calling for the companies to collaborate
to offer the industry’s first end-to-end
business rules solution.

Under the terms of the agreement,
Versata will develop a connector
between the Versata Logic Server and
ILOG JRules and, in turn, ILOG will
develop a connector between their ILOG
JViews for Workflow product and the
Versata Logic Server.

This blend of business logic will
enable customers to build highly trans-
actional, performance-critical systems
that integrate decisions or deduction
rules that can be changed dynamically
by business users.
www.ilog.com
www.versata.com

�TOWER Technology Announces
eProcess Objects Enhancements
(Boston) – TOWER Technology’s TOWER
eProcess Objects now include J2EE EJB
middleware software.

With TOWER eProcess Objects,
browser-based local and remote workers
can participate in production-level
workflows and integrated case manage-
ment processes with no loss of function-
ality or performance and without the
client maintenance and infrastructure
costs of a private wide-area network.
www.towertech.com

EPOS PARTNERS WITH
MONGOOSE TECHNOLOGY

(Auburn, AL / Houston) – EPOS Corporation and
Mongoose Technology have teamed to add a portal
offering as part of EPOS’ FirstLine Encore platform
of communications solutions. The EPOS portal
product will be built upon Mongoose PortalStudio
Enterprise Edition. In addition to enabling secure
single-login access to all EPOS applications, the por-
tal employs PortalStudio Search for accessing struc-
tured and unstructured content and provides a high
degree of rule-based personalization using the
Mongoose WebReactor.
www.mongoosetech.com
www.epos.com

>

N
ew

s

J2
SE

H
om

e
J2

E
E

J2
M

E

SUN CELEBRATES
20 YEARS OF INNOVATION

(Santa Clara, CA) – Sun Microsystems turned 20 this
past March, celebrating two decades as an innovator
whose focus on developing the products and tech-
nologies that make the Net work helped transform
the Internet from an obscure sideshow into the
ubiquitous tool it is today. For the past 20 years, Sun
has been transforming the way computing occurs
through new technologies. Today, as in the past, Sun
is leveraging its philosophy of openness to foster
customer choice to build their business success.
http://sun.com

>

Preview and order reports at www.engindata.com

engindata.com

Our comprehensive reports offer

insight and strategy to guide your

most critical business decisions in

today's fastest growing

technologies…

Establish your product and
marketing strategy

Understand your customer's needs

Evaluate Technology & Trends

SUBSCRIBE NOW AND SAVE $31.00
OFF THE ANNUAL NEWSSTAND RATE

ONLY $149 FOR 1 YEAR (12 ISSUES) REGULAR RATE $180
OFFER SUBJECT TO CHANGE WITHOUT NOTICE

Introductory
Charter Subscription

SYS-CON Media, the

world’s leading publisher of

i-technology magazines for

developers, software

architects, and

e-commerce professionals,

brings you the most

comprehensive coverage of

WebSphere.

WebSphereDevelopersJournal.com

The
World’s

Leading

Independent

WebSphere

Developer

Resource

The
World’s

Leading

Independent

WebSphere

Developer

Resource

..

109APRIL 2002

Java COM

Java COM

110 APRIL 2002

JavaDevelopersJournal.com
Visit www.javadevelopersjournal.com and learn

about the latest news and events from the world’s
leading Java resource. Know what’s happening in the
industry, minute by minute, and stay ahead of the
competition.

2002 Readers’ Choice Awards
Make your opinion count. Vote today for the Java

Developer’s Journal Readers’ Choice Awards, which
have earned the reputation as the most respected
industry awards of its kind. Known as the “Oscars of
the Software Industry,” this year’s awards feature an
expanded list of product categories and other addi-
tions that will make the fifth annual Readers’ Choice
Awards the best so far!

Web Services Edge 2002 Conference and Expo
Sign up for the Web Services Edge 2002 East

International Conference and Expo, June 24–27, at the
Jacob Javits Convention Center in New York City. This
year’s event is expected to be the biggest and best ever
with the top IT professionals in the business speaking
about the hottest industry topics. The Web Services
Edge 2002 Conference and Expo will feature presenta-
tions prepared for a diverse audience. Whether you
consider yourself a beginner or at the top of the IT
world, this conference is for you!

Developing SOAP Web Services
It takes only one day to become a Web services

developer. Sign up today for the Web Services Edge
2002 World Tour Series in New York City on April 19, or
San Francisco on May 13, where you can network with
the experts and learn to develop and deploy Web serv-
ices. This one-day event will cover base technology to
more advanced issues. Every attendee receives a free
copy of all software used.

Java Discussion Groups
What are the hottest topics in the Java discussion

groups this week? You can read the latest discussions
from the biggest IT professionals in the industry,
search archived messages, or post your own com-
ments at www.sys-con.com/java. No matter what
your preference, the Java discussion groups are a great
way to stay on top of the most important issues in the
IT world!

Free Seminar and Software
Now JDJ fans have the opportunity to learn more

about Oracle9i Application Server by visiting
www.javadevelopersjournal.com. Oracle9i Application
Server includes over 250 new features to make your
J2EE applications more scalable, reliable, and secure.
You can sign up to attend an Internet seminar featuring
Oracle9i Application Server’s chief architect and down-
load a preview copy of their software for free.

What’s Online... April 2002

Java COM

O
nl

in
e

J2
SE

H
om

e
J2

E
E

J2
M

E

WHIZLABS
WebSphere@Whiz Certification Simulator

3 Mock Tests (159 Questions). It comes with a test
engine and a question bank of 159 questions on the lat-
est pattern of the IBM WebSphere Certification Exam. It
also consists of a diagnostic test which will help you
know your strengths and weaknesses so you can plan
your preparation accordingly.

W W W . J D J S T O R E . C O M OFFERS SUBJECT TO CHANGE WITHOUT NOTICE

$39.95

GUARANTEED BEST PRICES

FOR ALL YOUR
WEB SERVICES

SOFTWARE NEEDS
MICROSOFT

Visual Studio .NET Enterprise Architect

Visual Studio .NET provides developers with the most
productive tool for building next-generation applications
for Microsoft Windows® and the Web. Visual Studio
.NET Enterprise Architect (VSEA) builds on the power of
Visual Studio .NET Enterprise Developer by including
additional capabilities for designing, specifying, and communicating applica-
tion architecture and functionality. It enables software
architects and senior developers to provide architectural guidance
and share best practices across the development team.

$2,238.99
MICROSOFT

Visual Studio .NET Enterprise Developer

With Visual Studio .NET Enterprise Developer,
developers can securely version and share their
source code, share best practices, target scalable
.NET Enterprise Servers, choose from a wide
range of third-party tools and technologies, and
easily tune the performance of their Web applications and Web
Services through the extensive performance-testing tools in Visual
Studio .NET.

$1,629.99

SILVERSTREAM
Extend Application Server

SilverStream eXtend is the first comprehensive,
real-world development environment for creating
Web Services and J2EE applications. The seam-
less integration of our proven eBusiness engines
and designers gives you the benefits of XML-based, enterprise-wide
integration and the power to create, assemble and deploy service-ori-
ented applications.

$495.00

SHOP ONLINE AT JDJSTORE.COM FOR BEST PRICES OR CALL YOUR ORDER IN AT 1-888-303-JAVA
BUY THOUSANDS
0F PRODUCTS AT

GUARANTEED
LOWEST PRICES!

BUY THOUSANDS
0F PRODUCTS AT

GUARANTEED
LOWEST PRICES!

Developer Edition (5 User)

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

W
eb

Services journal

Readers’
CHOICE
 AWARD

WSJ
World class

 AWARD

ALTOWEB
Application Platform Release 2.5

The AltoWeb Application Platform lets you build,
deploy, and manage J2EE applications and Web
services up to 10x faster without requiring extensive
J2EE or Web services expertise. How? By replacing
lengthy, custom and complex J2EE, XML and
Web services coding with rapid component
assembly and reuse.

$3,540.00

SYS-CON MEDIA
Web Services Resource CD

The Most Complete Library of Exclusive WSJ
and XML-J Articles on one CD! This CD is edited
by well-known WSJ Editor-in-Chief Sean Rhody
and organized into more than 40 chapters con-
taining more than 400 exclusive WSJ & XML-J
articles.
$100 Coupon Inside for Web Services
Edge Conference & Expo!

$79.00

Your Own MagazineYour Own Magazine
Do you need to differentiate yourself from your competitors?

Do you need to get closer to your customers and top prospects?

Could your customer database stand a bit of improvement?

Could your company brand and product brands benefit from a higher profile?

Would you like to work more closely with your third-party marketing partners?

Or, would you simply like to be a magazine publisher?

SYS-CON Custom Media is a new division of

SYS-CON, the world's leading publisher of

Internet technology Web sites, print magazines,

and journals.

SYS-CON was named America's fastest-grow-

ing, privately held publishing company by Inc. 500

in 1999.

SYS-CON Custom Media can produce inserts,

supplements, or full-scale turnkey print magazines

for your company. Nothing beats your own print

magazine for sheer impact on your customers'

desks... and a print publication can also drive new

prospects and business to your Web site.

Talk to us!

We work closely with your marketing depart-

ment to produce targeted, top-notch editorial and

design.We can handle your distribution and database

requirements, take care of all production demands,

and work with your marketing partners to develop

advertising revenue that can subsidize your magazine.

So contact us today!So contact us today!
East of the Rockies,
Robyn Forma,
robyn@sys-con.com,
Tel: 201-802-3022

West of the Rockies,
Roger Strukhoff,
roger@sys-con.com,
Tel: 925-244-9109

111APRIL 2002

Java COM

Java COMJava COM

112 APRIL 2002

The Next Big Thing

C A R E E R O P P O R T U N I T I E S
J2

SE
H

om
e

J2
E

E
J2

M
E

jdjcolumn@objectfocus.com

Getting up to speed

AUTHOR BIOS
Bill Baloglu is a

principal at
ObjectFocus

(www. ObjectFocus
.com), a Java staffing
firm in Silicon Valley.

Bill has extensive OO
experience and has

held software
development and

senior technical
management

positions at several
Silicon Valley firms.

Billy Palmieri is a
seasoned staffing

industry executive and
a principal at

ObjectFocus. His prior
position was at

Renaissance
Worldwide, where he

held several senior
management positions

in the firm’s Silicon
Valley operations.

Web services applications are
expected to be broad and far-reaching.
Early uses include companies utilizing
them within their business to integrate
multiple applications and systems; to
find a common way to link payroll, sales,
and CRM applications; and to commu-
nicate with each other.

B2B applications will enable busi-
ness and trading partners to integrate
their systems through a shared registry
(think intranet) or public registry (think
Internet) of information.

Consumer applications will enable
computers to search Web sites for infor-
mation (such as travel dates and fares)
as well as open up communications
with the desired source and perform
transactions. An early model of the same
concept was Napster’s peer-to-peer con-
necting of one computer to another to
share and exchange information.

The new piece is the actual transac-
tion that will be possible through Web
services. Skeptics might predict that this
will enable your computer to not only
find the wrong book online, but to pur-
chase and have it delivered to your
doorstep in record time.

While consumer applications of Web
services may be a few steps down the
road, companies are understandably
excited about the technology’s potential
to integrate critical functions both in-
and outside their organizations.

Simple Object Access Protocol
(SOAP) and Xquery (which queries data-
bases using XML) tap into Universal
Description Discovery and Integration
(UDDI), a giant repository of Web servic-
es. The twofold function of UDDI is to be
a global registry of all public Web servic-
es and also the technical standard that

defines an interface to the registry.
HP, IBM, Microsoft, Sun, and SAP are

all running an instance of the global
UDDI registry and share the database
that replicates on a daily basis.
Microsoft’s XML Web services platform
is called .NET, and Sun has dubbed their
version Sun ONE (Open Net En-
vironment), an “open framework Web
service using the Java architecture.”

An early explorer of Web services
technologies is Tony Hong, who (with
his brother James Hong) cofounded the
Web services site, www.xmethods.net, in
August 2000.

“The site started as a developer-
focused grass roots project,” says Hong,
who was director of engineering at a B2B
software solutions company called
Ventro (now NexPrise) in Mountain
View, California.

“I was responsible for internal and
external integration projects and help-
ing companies integrate transactions
between their trading partners. The Web
services stack was built to integrate sys-
tems and I saw great potential in the
technology,” says Hong.

After leaving Ventro, Hong looked
into other ways of experimenting with
Web services technologies although the
concept of the UDDI registry hadn’t yet
come about. He and his brother James
bootstrapped the xmethods.net site as a
repository of Web services information
that enables developers to experiment.

“On the site, Web services applica-
tions are contributed to by the develop-
er community,” says Hong. “Some are
demos, some are commercial, but all of
them are working.”

From our perspective on the staffing
side of the industry, we’re hearing a lot

about the demand for Web services
technologies from both our senior engi-
neers and hiring manager clients. Hong
agrees that this is where a large portion
of the high-tech industry is headed.

How does an ambitious engineer get
up to speed on the Next Big Thing?

There are a number of books about
Web services and SOAP. There’s a great
book list at www.soaplite.com and a
comprehensive view of the industry at
www.webservices.org.

From a skills development perspec-
tive, at the nuts-and-bolts platform level
you should learn XML and how to deal
with basic Internet protocols like HTTP.
Then you’ll have the foundation to tack-
le the Web services protocols. You
should also know the mechanics of
Internet access.

“Once the plumbing of Web services
is in place, people will wonder what to
do with it, and B2B integration will be
one of the first uses,” says Hong. “The
B2B integration space will see a lot of
new activity, so an understanding of B2B
integration and process mapping will be
important.”

Who will be hiring engineers with
strong Web services skills?

At first, the platform and tools
builders like BEA, IBM, and Sun should
have a strong need for people with these
skills. Eventually, enterprise application
vendors like Oracle, SAP, and PeopleSoft
will also need engineers with Web ser-
vices skills.

Online sources of information about
Web services include www.webservices
.org, www.uddi.org, www.xmethods.net,
and www.microsoft.com/net.

WRITTEN BY
BILL BALOGLU &
BILLY PALMIERI

In the simplest of terms, the technologies behind Web services (SOAP, UDDI, and
XML) combine to connect computers to each other and to perform complex tasks
without human interaction.

Next Month
CAST JavaMiner

JavaMiner may be the answer for people who
need to communicate a working application when
time is limited.
reviewed by Jason Bell

Programming Neural Networks in Java
This article shows a simple, yet particle, neural

network that can recognize handwritten letters,
and describes the implementation of a neural net-
work in a small sample program.
by Jeff Heaton

Ask Dr. Java
The answers to your Java-related questions.

by James McGovern

Manifest Destiny
This article presents some of the issues involved

with packaging Java code. Specifically, it explores
the Java manifest file and suggests ways that it can
be used to manage JAR file dependencies and elim-
inate classpath issues normally associated with
cross-platform deployment.
by Norman Richards

Using the Java Native Interface Productively
Although we try to make our applications pure

Java, outside forces sometimes make this impossi-
ble. This article discusses supporting a C/C++ API
in Java to enable a Java application to use it.
by Andrew J. Chalk

113APRIL 2002

Java COM

ADVERTISERINDEX
ADVERTISER URL PHONE PAGE

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are set to protect the high edi-
torial quality of Java Developer’s Journal. All advertising is subject to approval by the Publisher. The Publisher assumes no liability for any
costs or damages incurred if for any reason the Publisher fails to publish an advertisement. In no event shall the Publisher be liable for any costs
or damages in excess of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The Advertiser is
fully responsible for all financial liability and terms of the contract executed by the agents or agencies who are acting on behalf of the Advertiser.
Conditions set in this document (except the rates) are subject to change by the Publisher without notice. No conditions other than those set forth
in this “General Conditions Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the content
of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the discretion of the Publisher. This discre-
tion includes the positioning of the advertisement, except for “preferred positions” described in the rate table. Cancellations and changes to adver-
tisements must be made in writing before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

Actuate Corporation www.actuate.com/info/jbjad.asp 800-884-8665 57

Altova www.altova.com 31

AltoWeb www.altoweb.com 33

Apptricity www.apptricity.com 214-596-0601 89

Aquarius Solutions www.aquariussolutions.com 72

Ashnasoft Corporation www.ashnasoft.com 85

BEA www.bea.com/download 4

Borland Software Corp. www.borland.com/new/optimizeit/94000.html 71

Canoo Engineering AG www.canoo.com/ulc/ 41 61 228 94 44 19

Capella University www.capellauniversity.edu 1-888-CAPELLA 43

Compoze Software www.compoze.com/jdj 866-266-7693 87

Compuware Corp. www.compuware.com/products/optimalj 800-468-6342 25

DataDirect Technologies www.datadirect-technologies.com 800-876-3101 11

Dice.com www.dice.com 49

Dynamic Buyer Incorporated www.ibm.com/smallbusiness/dynamicbuyer 97

EnginData Research www.engindata.com 109

eXcelon Corporation www.exln.com 800-962-9620 29

Fiorano Software www.fiorano.com/tifosi/freedownload.htm 800-663-3621 79

IBM ibm.com/websphere/ibmtools 34

IBM ibm.com/websphere/ibmtools 35

IBM ibm.com/db2/outperform 37

ILOG www.ilog.com/jdj/jrules 1-877-223-ILOG 55

InetSoft Technology Corp. www.inetsoft.com/jdj 888-216-2353 73

Infragistics, Inc. www.infragistics.com 800-231-8588 14-15, 83

InstallShield Software Corp. www.installshield.com 847-240-9111 53

INT, Inc www.int.com 713-975-7434 18

Interland interland.com 1-800-308-6145 41

Java Developer's Journal www.sys-con.com 800-513-7111 88, 99

LOOX Software Inc. www.loox.com 800-684-LOOX 61

Metrowerks Corp. www.wireless-studio.com 9

Mongoose Technology www.portalstudio.com 39

New Atlanta Communications www.newatlanta.com 59

Northwoods Software Corporation www.nwoods.com 800-226-4662 72

Oracle Corporation oracle.com/javacode 800-633-1072 13

ParaSoft Corporation www.parasoft.com/jdj4 888-305-0041 51

PointBase, Inc. www.jdj5.pointbase.com 877-238-8798 65

Pramati Technologies www.pramati.com 877-PRAMATI 75

Precise Software www.precise.com/jdj 800-310-4777 27

QUALCOMM Incorporated www.brew2002.com 63

Quintessence Systems Limited www.in2j.com 67

Rational Software www.rational.com/offer/javacd2 47

SilverStream Software www.silverstream.com/challenge 21

Sitraka www.sitraka.com/jprobe/jdj 800-663-4723 17

Sitraka www.sitraka.com/jclass/jdj 800-663-4723 81

Sitraka www.sitraka.com/performasure/jdj 800-663-4723 116

Simplex Knowledge Company skc.com 845-620-3700 95

Softwired, Inc. www.softwired-inc.com 41-14452370 77

Sonic Software www.sonicsoftware.com 800-989-3773 2

SpiritSoft www.spiritsoft.com/climber 23

SOLUTIONSsite www.solutionssite.com 877-838-9500 x122 16

SYS-CON Industry Newsletters www.sys-con.com 201-802-3020 98

SYS-CON Subscription Offer www.sys-con.com/suboffer.cfm 107

Thought Inc. www.thoughtinc.com 415-836-9199 69

TogetherSoft Corporation www.togethersoft.com/1/jd.jsp 919-833-5550 6

WebGain, Inc. www.webgain.com/toplink_create3.html 1-877-WebGain Ext.15858 115

WebLogic Developer's Journal www.sys-con.com/weblogic 800-513-7111 107

Web Services Edge World Tour 2002 www.sys-con.com 201-802-3069 104-105

Web Services Journal www.sys-con.com 800-513-7111 96, 101

WebSphere Developer's Journal webspheredevelopersjournal.com 800-513-7111 109

Wireless Business & Technology www.sys-con.com 800-513-7111 94

XML-Journal Subscribe www.sys-con.com 800-513-7111 90

Zero G www.zerog.com 415-512-7771 3

AUTHOR BIO
Blair Wyman is a software
engineer working for IBM
in Rochester, Minnesota,
home of the IBM iSeries.

Jav
a D

ude
s

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

114 APRIL 2002

C U B I S T T H R E A D S

I’m just not sure that these recollec-
tions are exactly what your long-suffer-
ing editor had in mind when he gave
me this fun gig, so perhaps I’ll save the
flowery stories and try to be a bit more
practical.

Oh, bother...the very notion of
making sense is fundamentally at
odds with my manifest propensity for
waxing preposterous: endeavoring to
elevate the perfect absence of mean-
ingful content to its epitome. It has
been a joyful exercise in the art of
putting the “blank” back in “blank
verse.”

Lately, I’m thinking I owe you some-
thing more substantial than that, and
frankly it bothers me sometimes. I’m
afraid I am squandering my tenuous
opportunity to push a political agenda,
or to advocate a belief system, or to fire
your imagination and tell you how
white your shirts can be.

On the other hand, you probably
already have a perfectly serviceable
belief system, a solid set of conscien-
tious political convictions, and daz-
zlingly incandescent unmentionables.
Maybe I should just chill out on the
whole heavy, head-shaping trip and
simply hope my words will make you
smile, or laugh, or maybe even dream a
little.

I like to think I can keep an open
mind – perhaps it’s the rust gathering
thickly on the door hinges – but I’m

surely kidding myself. It’s much more
likely that my belief system is quietly
calcifying into a spiny little ball in some
tangential tidepool, viciously insulat-
ing itself against anything that dares to
tread nearby.

But sometimes, thankfully, some-
thing still comes along to shake my
convictions to their roots. For instance,
several years back now, the whole con-
cept of object-oriented programming
was one such mindbender. Before my
first exposure to OOP, I was perfectly
happy in my procedural understanding
of computer programming. I didn’t
want to hear about any object-
oriented approach to programming –
an approach so new that it must surely
be deeply and hopelessly flawed. After
all, what could possibly be more con-
cise and accurate than a well-drawn
flowchart?

Then I read a skinny little book
about OOP – one of the multivolume
set of documentation that came with a
later version of Turbo Pascal – and
some glaring lights started illuminating
my previously comfortable ignorance.
OOP made a lot of sense, right away,
but was too abstract for me to grasp at
first reading. OOP didn’t really “click”
for me until later, when I needed a gen-
eral-purpose numeric input field in a
GUI I was writing for plotting some
interesting chaos simulator or some-
such. I thought about creating a

numeric input field “object” – an object
I could put anywhere on the screen,
and from which I could get input – and
OOP fit my requirement perfectly. I was
sold on the potential of OOP and
haven’t looked back.

I’ve recently had another such
pseudoawakening: a couple of weeks
ago a colleague of mine recommended
a book called The Elegant Universe by
Brian Greene. The book purports to be
a layman’s look at string theory, the
11-dimensional description of reality
that holds some promise for logically
unifying all the forces in the universe,
and my skepticism was unmaskable.
I’ve read a bit of Einstein’s work on rel-
ativity, beginning pretentiously and
finishing prematurely, and sort of
vaguely “getting it.” I have trouble
imagining the macrouniverse in any
other terms.

While I haven’t finished reading the
book yet, I soon will; I’m excited at the
prospect of my spiny little ignorance
urchin being upended and eviscerated
yet again. With luck, I will have lubri-
cated my brain doors a little and
shooed away some ignorance in the
process. But fear not, gentle reader,
that I may run out of ignorance; while I
hope to chip away at it for years to
come, my personal supply knows no
bounds.

blair@blairwyman.com

WRITTEN BY
BLAIR WYMAN

I’ve been thinking that, if I want to keep writing these monthly bits o’ fluff, I’d better start making some
sense pretty soon. If you’ve been reading Cubist Threads, you know I’m prone to launching into some banal
diatribe about the prosaic minutiae of my midwestern upbringing.

Forces of the Universe and Other Sundries

115APRIL 2002

Java COM

WebGain, Inc.
www.webgain.com/toplink_create3.html

Java COM

116 APRIL 2002

Sitraka
www.sitraka.com/performasure/jdj

